

THE ALTAIR MOTION SOLUTION

Rajiv Rampalli • Sr. VP Software Development • Feb. 13, 2019

WHAT WE WILL DISCUSS TODAY...

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

THE CURRENT SOLUTION

SYSTEM SIMULATION OF A SPIDER

THE ALTAIR MOTION SOLUTION

#1: QUICKLY ANALYZE THE MOTION OF CAD ASSEMBLIES

Kinematics:

- Study relative motion between parts
- Compute forces required to achieve a required motion
- Determine design to achieve the required motion

#2: CHARACTERIZE SYSTEM BEHAVIOR DURING NORMAL OPERATION

Dynamics:

- Determine nonlinear dynamic response of system
- Include flexible bodies in your model
- Compute stress, strain & deformation
- Perform subsequent fatigue analysis

#3: UNDERSTAND & IMPROVE CONTACT DOMINATED SYSTEMS

Contact:

- Use the CAD geometry you have
- Specify normal and friction force properties
- Simulate to get accurate behavior
- Examine detailed response to understand behavior

#4: MINIMIZE THE EFFECTS OF VIBRATION

Vibration: Predict & improve system level vibration

#5: CERTIFY DESIGNS

Virtual Validation:

- Advanced driver to simulate complex events
- Tire-terrain interaction to simulate realistic conditions
- Integrated DOE engine for design exploration
- Standardized reports

Certification: Does the design function as intended for all scenarios?

#6: SIMULATE AND IMPROVE COMPLEX SYSTEMS

System Model:

- Multibody model
- Actuation model
- Motor model
- Control model

MotionSolve in Toyota, Japan

"Smooth Driving To The Town"

車速30Km一定 ダブルレーンチェンジ

calculation

experiment

TOYOTA AUTO BODY – ELECTRIC CAR DEVELOPMENT

Accurate component loads for fatigue analysis

 \bigtriangleup

MOTIONSOLVE

1. Assemble 2. Solve

3. Evaluate 4. Improve

- ♦ 2nd Order Differential-Algebraic Equations
- ♦ Sophisticated DAE solvers
- ♦ State of the art linear solvers
- ♦ Thoroughly validated with real models
- ♦ Fast, robust and accurate

MOTIONSOLVE

MOTIONSOLVE

MOTIONSOLVE FOR AUTOMOTIVE

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

KEY HW 2019.0 ENHANCEMENTS

ANALYTICAL DESIGN SENSITIVITY & OPTIMIZATION

ANALYTICAL DESIGN SENSITIVITY & OPTIMIZATION

Given a work cycle, what is the design that minimizes the energy used by the Delta robot?

Energy/cycle reduction = 30% Total CPU Time = 60s

DURABILITY SIMULATIONS

ROAD COURSE DRIVE EVENT

ኛ RoadCourseDrive	e (ev_rd_course_d	rive)		×
Road property file				
💋 D:\Altair\2019.0.0.51\	,hw\mdl\autoentities'	\properties\7	Tires\MF_SWIFT\T	NO_FlatRoad.rdf
Path profile © Straight line C F	Road centerline	° Curve		
Velocity profile Constant	urve			
Units :	Model	•		
Velocity :		10000.0		T
End time [s] :		10.0		
Look ahead time [s] :		0.5		
Prediction step size [s] :		0.01		
Print interval [s] :		0.05		
🗖 Show Driver Output S	Gettings		🔽 Event Specif	ic Solver Settings
-Solver Input File				
C:\work-1010\TEST	\19build51\e∨ents\e	v_rd_course	e_drive.xml	
Simulation Settings	Output Options		Run	Apply Cancel

Time (sec)

150

(26)

250

225

200

175

ev coo

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

WHAT'S IN DEVELOPMENT NOW

NONLINEAR FINITE ELEMENTS VIA COSIMULATION

FMU SUPPORT

DEM SIMULATIONS

CONCLUSION – THE ALTAIR MOTION SOLUTION...

