Flux Conference 2012

High – Efficiency Motor Design for Electric Vehicles

L. Chen, J. Wang, P. Lombard, P. Lazari and V. Leconte – University of Sheffield, OffeRANOctober 2012 Presented by: P. Lazari

Outline

- Requirements and design challenges for EV traction machines
- Computationally efficient design technique for EV traction machines against driving cycle
- Optimisation objective and constraints
- Optimisation methodology and tools
- Design case studies
- Conclusions

Requirements and design challenges for EV traction machines

Requirements:

- High energy efficiency and cost-effectiveness.
- High torque, 3~4 times the nominal value, required for acceleration and hill climbing.
- >> Peak power twice the rated value at high speeds.

Design Challenges:

- Wide operating torque-speed range, imposes significant constraints on achievable machine efficiency.
- Machine design should be targeted for overall energy saving over driving cycle.
- Enormous computation time is required for FE evaluation over a driving cycle. This makes multi-parameter optimisations with FE models practically impossible.

High-efficiency electric motor for electric vehicle

Solutions

- Derivation of representative driving cycle operating points - dramatically reduce the number of FE computations.
- Use of efficient FE coupled optimisation tool
 --Flux & GOT-IT provides an ideal and effective design optimisation environment for EV traction machines.

High-efficiency electric motor for electric vehicle

Requirements of EV traction

- Max speed 120 km/h
- Base speed
- Peak power
- Max continuous power at max speed – From **NEDC**
- Contin. Torque **10%** slope at 20km/h
- Peak Torque 20% slope at given acceleration

Sheffield.

5

High-efficiency electric motor for electric vehicle

2012 Flux Conference - Rome, Italy, October 17-18, 2012

Investigated vehicle data

Parameter (Unit)	Value
Tire size	165/50 R15
Radius of wheels (m)	0.273
Vehicle mass (kg)	800
Gravitational acceleration (m/s ²)	9.807
Rolling resistance	0.007
Product of drag coefficient and front area (m ²)	0.35
Air density (kg/m ³)	1.25
Efficiency of differential	0.980
Gear Ratio	4.0 & 7.0

6

- Vehicle power-train employs a distributed drive with three motors coupled to the front and rear axle.
- 40% and 60% of traction power is shared between front and rear motors respectively.

High-efficiency electric motor for electric vehicle

Vehicle characteristics over NEDC

Speed, torque and power plots of front motor derived from vehicle specification.

High-efficiency electric motor for electric vehicle

Motor design specification

- Traction machine should be optimized against NEDC, while satisfying thermal and volumetric constraints.
- Problem Require enormous amount of calculation time viz. 600 operating points over NEDC, ~ 200 hours just for one design

Parameter (Unit)	Value
Base speed (rpm)	1350
Maximum cruise speed (rpm)	4500
Tpeak at base speed (Nm) for 120 sec	70.0
Tcont. at base speed (Nm)	35.0
Tpeak at maximum cruise speed (Nm)	18.0
Peak power (kW)	8.8
Continuous power (kW)	5.0
Nominal DC link voltage (V)	120
Max line-to-line voltage (V)	< 250 (for safety)
Cooling	Air-cooled

High-efficiency electric motor for electric vehicle

Energy distribution over NEDC

 Energy consumption on the motor output shaft over NEDC of reference vehicle.

 There exist six dominant points where energy consumption is significantly high.

High-efficiency electric motor for electric vehicle

Energy distribution over NEDC

The remaining points scatter around and can be represented by another six points according to the energy "centre of gravity".

High-efficiency electric motor for electric vehicle

Validation of 12 NEDC points

Energy loss over all points in NEDC cycle (kJ)	55.104
Energy loss over 12 points (kJ)	53.387
Difference (%)	3.1%

High-efficiency electric motor for electric vehicle

Design technique for EV traction machines

- Calculation time limitation effectively removed using 12 representative points.
- NEDC high energy consumption is dominated by low torque/middle-high speed points.
- Mismatch between NEDC high operating duty and rated operating points – Significance of optimising against driving cycle.

12

High-efficiency electric motor for electric vehicle

Design technique on ARTEMIS Urban

The

Of Sheffield.

University

- Frequent variation of Artemis Urban speed.
- 55 representative points with loss calculation error of 5%.
- Artemis Urban is dominated by variable torque/ low to middle speed points.

Optimisation objective and constraints

• Objective:

Minimisation of energy loss over 12 NEDC points.

Constraints:

- >> Dimensional: stack length and outside diameter.
- ▶ Electrical: current, voltage limits imposed by converter.
- Thermal: temperatures of windings and magnets.
- Mechanical: stress level of rotor.
- Demagnetization withstand of magnets.
- >> Torque ripple.

High-efficiency electric motor for electric vehicle

Optimisation tool: GOT-It

 GOT-It is a powerful and efficient optimisation tool developed by CEDRAT.

High-efficiency electric motor for electric vehicle

2012 Flux Conference - Rome, Italy, October 17-18, 2012

GOT-It coupling with Flux 2D/3D

 Objectives, constrains and selection of algorithms are defined in Got-it which performs optimisation by passing parameters to and retrieve results from Flux FE model.

High-efficiency electric motor for electric vehicle

2012 Flux Conference - Rome, Italy, October 17-18, 2012

Sequential Surrogate Optimiser

Optimisation case studies for EV traction motors

- Micro-sized electric vehicle with front and rear wheel drives.
- Front motor -- 36 slot/4 pole PMa-SynRM (1x40%, gear ratio 4:1)
- Two rear motors -- 36 slot/6 pole PMa-SynRM (2×30%, gear ratio 7:1)

Optimisation design parameters

• 2 parameters for front motor optimisation:

- ▶ Rotor radius (Rr) and tooth width (TW).
- 5 parameters for rear motor optimisation:
 - Rotor radius (Rr), insulation ratio (IR), tooth width (TW), back iron thickness (BI) and number of turns per coil (TN).

19

High-efficiency electric motor for electric vehicle

Torque-speed operating range requirements

Parameter	Front	Rear
Base speed	1350 rpm	2100 rpm
Max speed	4500 rpm	8200 rpm
Rated torque	35 Nm	17 Nm
Peak torque at base speed	70 Nm	30 Nm
Peak torque at maximum		
speed	18 Nm	7.5 Nm
Ations for gineering Of Sheffield. 2012 Elux Conference - Ro	ome. Italy. October 17-18, 2012	20

Optimisation design constraints

Dimensional and electrical constraints:

Parameter	Front	Rear
Stack length	118 mm	105 mm
Outer diameter	150 mm	120 mm
Max current	170 A	170 A
DC link voltage	120 V	120 V
Max line-to-line no-load voltage (for safety)	240 V	240 V

Demagnetisation:

- Magnets withstand during deep flux weakening.
- Mechanical strength:
 - Stress level on rotor bridges < 450 MPa at 1.5 * Nmax.</p>
- Thermal constraints:
 - Winding and magnet temperature should be < 120 ° C.</p>

High-efficiency electric motor for electric vehicle

Optimisation design constraints and objective

• Static thermal model employed in optimisation process:

Optimisation objective:

Minimization of energy loss over 12 NEDC points while satisfying required torque-speed range and other thermal and volumetric constraints.

High-efficiency electric motor for electric vehicle

Optimisation workflow

Optimisation evolution

• For the **front** motor:

For the **rear** motor:

Optimised design case studies

12 NEDC points			
	F	ront	Rear
W _{cu}	kJ	56.97kJ	37.13 kJ
W_{fe}	kJ	15.0 kJ	19.45 kJ
$W_{fe}: W_{cu}$		3.79	1.91
Efficiency	%	93.67%	94.56%

Front motor

Rear motor

25

The University Of Sheffield.

High-efficiency electric motor for electric vehicle

2012 Flux Conference - Rome, Italy, October 17-18, 2012

Conclusions

- Energy distribution of NEDC can be represented by 12 points.
- FE based optimization for EV traction machines can be made against 12 representative points, leading to large reduction of computation time.
- Optimum designs with multiple parameters can be efficiently obtained using GOT-It & Flux.
- For PMa-SynRM copper loss is the dominant loss component over NEDC. Optimisation against rated point may also lead to good efficiency over NEDC.

High-efficiency electric motor for electric vehicle

Optimised design case studies – Rear Motor

	NE	DC
Cycle Wcu	J	3.64E+04
Cycle Wfe	J	2.17E+04
Wcu:Wfe		1.67
Cycle loss	J	5.81E+04
Cycle Wout	J	9.52E+05
NEDC Energy Efficiency	%	94.30%

ARTEMIS

Cycle Wcu	J	4.74E+04
Cycle Wfe	J	1.13E+04
Wcu:Wfe		4.19
Cycle loss	J	5.85E+04
Cycle Wout	J	7.59E+05
NEDC Energy Efficiency	%	92.83 %

28

High-efficiency electric motor for electric vehicle

2012 Flux Conference - Rome, Italy, October 17-18, 2012

Optimised design case studies – Front Motor

	Final optimal
Items	design
Peak torque density	35.4 kNm/m ³
Peak current	153 A
Peak current density (rms)	16.38 A/mm ²
Voltage at peak torque/base speed	102 V
Copper Loss at peak torque/base speed	2517 W
Iron Loss at peak torque/ base speed	36.20 W
Efficiency at peak torque/base speed	79.47%
Peak torque/max speed	15 Nm/4500 rpm
Current at peak torque/max speed	68.77 A
Voltage at peak torque/max speed	120 V
Copper Loss at peak torque/max speed	508.33 W
Iron Loss at peak torque/ max speed	165.75 W
Efficiency at peak torque/max speed	91.19%
Copper loss over NEDC	56.97kJ
Iron loss over NEDC	15.0 kJ
Wfe : Wcu	2.8
Driving cycle efficiency (NEDC)	93.67%

29

High-efficiency electric motor for electric vehicle

2012 Flux Conference - Rome, Italy, October 17-18, 2012

