
A NEW HIGH EFFICIENCY TECHNOLOGY FOR THE INDUCTION 
HEATING OF NON MAGNETIC BILLETS 

F. Dughiero(1), M. Forzan(1), S.Lupi(1), F. Nicoletti(1), M.Zerbetto(2) 

 

(1) University of Padua, Department of Electrical Engineering, 
Via Gradenigo, 6/A., 35131 Padova (Italy) 

(2)Inova Lab srl, Via Torino, 213., 10040 Leinì (Italy) 
 

INTRODUCTION  
In recent years, an innovative DC induction heating concept has been proposed in order to 
increase the efficiency of the induction heating of low electrical resistivity metal billets [1-3]. 
In this approach the billet is forced to rotate inside a transverse DC magnetic field by means 
of an electric motor drive. Due to the change of magnetic flux an induced current distribution 
reacts to the driving torque during the rotation and generates thermal power within the billet. 
This concept has been successfully applied and some installations are working in some 
aluminum foundries. The main drawback of this approach is related to cost of installation 
because of the presence of a superconductive coil.  
A more convenient solution, proposed in this paper, allows to achieve the same high 
efficiency at lower cost. In this solution the billet is kept still and a series of permanent 
magnets, positioned in the inner part of a ferromagnetic frame is rotated.  
 

DESCRIPTION OF THE PROBLEM 
The heating of a aluminum billet can be obtained thanks to the eddy currents induced by 
rotating the induction field B produced by a system of permanent magnets around the billet 
itself. 
Two possible sketches of the system are presented in Fig.1: the first one describes ¼ of the 
entire geometry for a 4 poles system while the second one shows the entire geometry of a 8 
poles system. In this paper, some preliminary results are presented only for the second 
configuration, with an aluminum billet 100 mm radius (R1) and 500 mm length, applying for 
the electro-magnetic solution an analytical method as well as a FE commercial code. The 
analytical solution requires very short computational time and can be conveniently applied to 
an automatic optimization process. On the other hand, the FEM model has been solved by 
means of a transient magnetic solution that reaches the steady state condition only when a 
high number time steps have been solved.  
The solution requires the computation of the induction field inside the billet, B, produced by 
the permanent magnets and the induced currents produced by the motion: 

���� = �����	 × ��� (1) 

where uθ is the azimuthal unit vector. 
In the hypothesis of a rotational speed ω in the range between 500 – 3000 rpm, the magnetic 
Reynolds number, RM: 

�
 = ������ (2) 

(where σ - the electrical conductivity, µ − the magnetic permeability, U0 and L0 - the 
characteristic velocity and length respectively) is much bigger than one and, obviously, the 
motional term must be considered. 



 

A) 
Fig.1: system geometry. A)
the air-gap (it takes into account also the thermal insulating material to protect permanent 
magnets); region 3 - the permanent magnets;
external air. B), a 8 poles model is shown.
 

SIMULATION STRATEGY 
FEM Solution 
The FEM model has been solved taking into account the rotational movement of the 
permanent magnets by means of a
The computation conditions for a transient magnetic 

• The state variable are time dependent d/dt 
• The computation concerns only the 

 
The 2D electromagnetic formulation is 
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- the electric scalar potential. 
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where Br is the remanence and M the magnetization vector
The displacement of the rotating
consequently the computation domain must be re
The state variable, the magnetic vector potential 
initialized to zero for t = 0. 
The state variables are time dependant and the differential equations of first order with respect 
to time:  
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A), a 4 poles system. Region 1 - the aluminum b

gap (it takes into account also the thermal insulating material to protect permanent 
the permanent magnets; region 4 - the back iron;

model is shown. 

model has been solved taking into account the rotational movement of the 
by means of a transient magnetic solution.  

The computation conditions for a transient magnetic solution are the following:
ble are time dependent d/dt ≠0  

The computation concerns only the B, H and E fields (D is not computed)

The 2D electromagnetic formulation is based on the following PDE: 
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permeability of the medium, A - the vector potential [Wb/m], H
coercive magnetic field for the permanent magnets, σ - the conductivity of the medium [S], V

 
The constitutive equations for magnetic materials are described by: 

for soft magnetic materials, e.g. region 4 of Fig.1 

� �� ) for hard magnetic materials, e.g. region 3 

and M the magnetization vector. 
rotating part modifies the geometry of the modelled device; 

onsequently the computation domain must be re-meshed at each time step.
the magnetic vector potential A and the electric scalar potential V are 

are time dependant and the differential equations of first order with respect 
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are integrated by means of the 
divided into small time steps;
with respect to time. The numerical code applie
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For the preliminary computations
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For the 8 poles case, some results are presented in Fig. 
induced current density in the aluminium billet and the lines are the flux lines.
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Fig.2: Induced current density 
the steady state condition of a transient FE

Analytical solution 
The analytical solution of the problem has been developed
system #�, -, .% with the origin in the center of the billet.
of the regions makes reference to the description of Fig.1.
Maxwell’s equation are taken into account neglecting the displacement currents
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the Euler implicit method in time domain. The time domain is sub
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with respect to time. The numerical code applies then an implicit method where the derivative 
values at the current and the previous steps: 
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are taken into account neglecting the displacement currents: 
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with the constitutive equation: 

0� =  �1��� + 2�  × ���3 where: 2� =  Ω ∙ � ∙ ���- (9) 

Computation of the magnetization M. 
In the permanent magnets (region 3), the constitutive equation is [5]: 
���6 = �6����6 + ��)��� (10) 
Considering magnets having a linear second quadrant demagnetization characteristic and with 
remanence �� , the amplitude of )��� is: 

) =  ���� (11) 

The direction of the vector )��� depends on the magnetization of the magnets, in polar 
coordinates we have: 

)��� = )����� + )	���	 (12) 

)� and )	 can be expressed by Fourier series: 

)� =  7 )�8cos (<=-)>
8?+,6,@,…  (13) 

)	 =  7 )	8sin (<=-)>
8?+,6,@,…  (14) 

where 2= is the number of poles. 
Using magnets with parallel magnetization, )�8 and )	8 are: 

)�8 = ���� EF(G+8 + GH8) (15) 

)	8 = ���� EF(G+8 − GH8) (16) 

where EF is the magnet pole-arc to pole-pitch ratio and G+8, GH8 are for 2p greater than 2: 

G+8 = IJ< K(<= + 1)EF L2=M
(<= + 1)EF L2=

 (17) 

GH8 = IJ< K(<= − 1)EF L2=M
(<= − 1)EF L2=

 (18) 

The two components of the magnetization are illustrated in figures 3 and 4, for a 8 poles 
system. 
General solution: diffusion equation. 
For the problem solution we introduce the magnetic vector potential [6]: 

��� =  ∇��� × �� (19) 

��� =  − &��
&!  (20) 

Substituting (5) and (9) in (8) we get: 

/�� × 1
� ∙ 1��� − )���3 = �1��� + 2�  × ���3 (21) 



    
Fig.3. magnetization )�                               Fig.4. magnetization )	 

 
Substituting (19) and ��� = 0, (21) becomes: 

/�� × 1
� ∙ 1∇��� × �� − )���3 = �12�  × ∇��� × ��3 (22) 

We can rewrite (22) as: 

∇��� × ∇��� × �� = � ∙ �12�  × ∇��� × ��3 + /�� × )��� (23) 

Considering the Coulomb gauge 1∇��� ∙ �� = 03 we obtain: 

∇H�� = � ∙ �1−2�  × ∇��� × ��3 − /�� × )��� (24) 

The magnetic vector potential has only one component along . direction, then the equation 
(24) becomes:  

&H�
&�H + 1

�
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�H
&H�
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&- + 1
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&)�&- − 1
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Eqn. (25) can be written for each region of the model. 
 
General solution applied in each region of the model. 
The general solution of equation (25) considering the form of the magnetization of the PM 
(13) is: 

�� = 7 �8�sin (<=- + N)>
8?+,6,@,…  (26) 

Thus the calculus can be simplified using the complex domain, (26) becomes: 

�� = OP Q7 �8�eSTUV>
8?+,6,@,… W (27) 

where: 
- OPX… Y indicates the imaginary part of the complex number 
- �8� =  �8�eSZ 

The solution in all regions are obtained by applying the separation of variables method. 
In each regions we get: 
• In region 1 (aluminum billet) equation (25) in the complex domain becomes: 

&H�+&�H + 1
�

&�+&� − (=H + [\H�H)�+ = 0 (28) 



where: 

\H = �+�+ <=Ω (29) 

thus the solution is: 

�+ = 7 ] +̂8F08F �[6H\��_>
8?+,6,@,…  with [H = −1 (30) 

where 08F is the Bessel function of first kind and order <=. 
• In region 2 (air-gap) equation (25) in the complex domain becomes: 

�H = 7 c^H8F�8F + dH8F�e8Ff >
8?+,6,@,…  (31) 

• In region 3 (permanent magnets) equation (25) in the complex domain becomes: 

�6 = 7 ]^68F�8F + d68F�e8F + ��)8�
(<=H − 1)_>

8?+,6,@,…  (32) 

where 

)8 = <=)�8 + )	8 (33) 

In region 4 (iron) equation (26) in the complex domain has the same terms of equation (31) 
while in region 5 (external air) the governing equation contains only the �e8F term. 
 
Boundary conditions. 
The integration constants +̂8F, ^H8F, dH8F, ^68F, d68F, ^g8F, dg8F, d@8F  are computed by 
writing the boundary conditions at the interface between regions: h��i�?jkl = h�mi�?jkl    

h�n�i�?jkl = h�nmi�?jkl (34) 

where J, [ are the indexes of two regions, ��m is the radius at the interface. 
 
Computation of eddy currents and power density. 
The induced current density in the complex domain is[6]: 

0+ =  −[ \H
�+ �+ (35) 

Thus the eddy current density in the billet is: 

0+(�, -) =  OP o0+eSTUVp (36) 

The power loss density is given by: 

=(�, -) =  0+H(�, -)
�  (37) 

And the instantaneous value of the power losses in the billet, integrated over the volume of 
the cylinder, is: 

q =  r r 0+H(�, -)
� � �- ��

Hs

�

jt

�
 (38) 



RESULTS  
Some comparisons between the results obtained by the analytical formulation and the ones 
resulting from the FEM solution are presented in the following for a 8 poles system, solved 
with different rotational velocities. The main geometric dimension of the system, taken into 
account as reference for this comparison with reference to Fig.1, are: R1 = 100 mm; R2 = 130 

mm; R3 = 180 mm ; R4 = 230 mm; EF, the magnet pole-arc to pole-pitch ratio, = 30/45 = 

0.666; the axial length is set 0.5 m. 

The rare earth permanent magnets have a remanence Br = 1.1 T and a coercive field Hc = 838 
kA/m. 
 

 
Fig.5: Current density distribution evaluated along the radius for different rotational speeds. 

FEM solution - dotted lines; analytical solution - continuous lines  

ANALYTICAL FEM 
Fig.6: Current density distribution as resulting from the analytical solution and the FEM one: 

on x axis the azimuth [angle in degree], on y axis the radial position [m]. 
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CONCLUSIONS  
In the paper, a comparison between numerical and analytical methods for the prediction of 
current and power density induced in a conductive billet inside a rotating magnetic field is 
proposed. The two different methods can be used in order to design and optimize this 
innovative technique to heat billets. 
The proposed method looks very attractive because it overcomes the main drawback of the 
previously proposed approach where the billet is forced to rotate inside a DC induction field 
produced by superconductive coils, that requires an adequate refrigerating system. The system 
reaches the same efficiency values of the previously proposed approach, efficiency that 
mainly depends upon the efficiency of the motor and its driving system, achieving strong 
induced power values using a set of rare earth permanent magnets instead of a much more 
expensive superconductive system.  
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