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INTRODUCTION

In recent years, an innovative DC induction heatompcept has been proposed in order to
increase the efficiency of the induction heatindpef electrical resistivity metal billets [1-3].
In this approach the billet is forced to rotateiohs a transverse DC magnetic field by means
of an electric motor drive. Due to the change ofyneic flux an induced current distribution
reacts to the driving torque during the rotationdagenerates thermal power within the billet.
This concept has been successfully applied and sostellations are working in some
aluminum foundries. The main drawback of this applois related to cost of installation
because of the presence of a superconductive coil.

A more convenient solution, proposed in this pamdlows to achieve the same high
efficiency at lower cost. In this solution the dillis kept still and a series of permanent
magnets, positioned in the inner part of a ferrometge frame is rotated.

DESCRIPTION OF THE PROBLEM

The heating of a aluminum billet can be obtaineshkis to the eddy currents induced by
rotating the induction field B produced by a systefhhpermanent magnets around the billet
itself.

Two possible sketches of the system are present&ijil: the first one describes ¥ of the
entire geometry for a 4 poles system while the s@¢ame shows the entire geometry of a 8
poles system. In this paper, some preliminary tesate presented only for the second
configuration, with an aluminum billet 200 mm rasli(R1) and 500 mm length, applying for

the electro-magnetic solution an analytical metlhsdwell as a FE commercial code. The
analytical solution requires very short computagicimme and can be conveniently applied to
an automatic optimization process. On the othedh#ime FEM model has been solved by
means of a transient magnetic solution that reathesteady state condition only when a
high number time steps have been solved.

The solution requires the computation of the inaunctield inside the billet, B, produced by

the permanent magnets and the induced currentsigeddy the motion:

E; = wriig x B (1)

where ¢ is the azimuthal unit vector.
In the hypothesis of a rotational spaedn the range between 500 — 3000 rpm, the magnetic
Reynolds number, iR

Ry = ouUyLg (2)
(where o - the electrical conductivityp — the magnetic permeability, gUand Ly - the

characteristic velocity and length respectively)niach bigger than one and, obviously, the
motional term must be considered.
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Fig.1: system geometnp), a 4 poles system. Region the aluminum illet; region 2 -
the airgap (it takes into account also the thermal ingwjataterial to protect permane
magnets); region 3 the permanent magne region 4 -the back iror region 5 - the
external air. B), a 8 polenodel is showi

SIMULATION STRATEGY
FEM Solution
The FEM model has been solved taking into account the iootat movement of th
permanent magnebyy means of transient magnetic solution.
The computation conditions for a transient magrsolutionare the following
* The state variale are time dependent d+0
* The computation concerns only 1B, H andE fields O is not computec

The 2D electromagnetic formulationbased on the following PDE:

1 dA

Vx( VxA—HC>+a(—+VV)=0 3
HrHo at

wherel, - the relativepermeability of the mediunA - the vector potential [Wb/m], - the

coercive magnetic field for the permanent magro - the conductivity of the medium [S],

- the electric scalar potential.

The constitutive equations for magnetic materiadsdescibed by:

B = uH = u,uoH for soft magnetic materials, e.g. region 4 of F 4)

B = u,uoH + B, = u,uoH + puy M for hard magnetic materials, e.g. regio (5)

where B is the remanencand M the magnetization vec.

The displacement of theotating part modifies the gometry of the modelled devic
consequently the computation domain must I-meshed at each time st

The state variablehe magnetic vector potentiA and the electric scalar potential V
initialized to zero for t = 0.

The state variablesre time dependant and the differential equatidrissd order with respec
to time:

dx
— =F(X,0 (6)



are integrated by meanstbi Eulerimplicit method in time domain. The time domairsig-
divided into small time stepsluring each step the unknowns are supposed tolwvegrly
with respect to time. The numerical code afs then an implicit method where the deriva
Is computed by means walues athe current and the previous steps:

d_X — Xl+1 Xl (7)
dt At

For the preliminary computatio presented in this papethe real mechanical behavi,
which must takénto account the inertia and other resistive tos (e.g. the torque due to tl
ventilation),is not considereand a constant velocity of rotation is impo:

For the 8 poles case, some results are presentdd.i2, where the colour maps debe the
inducedcurrent density in the aluminium billet and theskrare the flux line
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Fig.2: Induced currerdensitydistribution (color shade plot) and equiflux limesultingin
the steady state conidih of a transient FM solution atdifferent rotationaspeeds.

Analytical solution

The analytical solution of the problem has been dews usinga cylindrical coordinate
system(r, 9, z) with the origin in the center of the bill In the following brmulas, the index
of the regions makes reference to the descriptidnigol.

Maxwell’s equatiorare taken into account neglecting the displacemament:

Vx H=] (8)



with the constitutive equation:
J= o(E+7 x B)where:t = Q-r-ud 9)
Computation of the magnetization M.
In the permanent magnets (region 3), the constégguation is [5]:
Bz = p3Hz + poM (10)
Considering magnets having a linear second quadeanagnetization characteristic and with
remanence,. , the amplitude of is:

B,

Ho

The direction of the vectoM depends on the magnetization of the magnets, lar po
coordinates we have:

M = Mrl_l,)r + M,gﬁg (12)

M, andM, can be expressed by Fourier series:

M, = Z M,.,cos (npV) (13)
n=1,3,5,...

My = Z My, sin (np9) (24)
n=1,3,5,...

where2p is the number of poles.
Using magnets with parallel magnetizatiafy,, andM,,, are:

B,
M, = —ay ($1n +¢20) (15)
Ho

B,
My, = %ap (E1n —$2n) (16)
wherea, is the magnet pole-arc to pole-pitch ratio dpd &, are for 2p greater than 2:
. T
- sin [(np + Da, E]

L= 17
fl (‘np + 1)0(p % ( )

sin [(np - Da, %]
$on = ( 1 T (18)
np p 2D
The two components of the magnetization are ilastt in figures 3 and 4, for a 8 poles
system.

General solution: diffusion equation.
For the problem solution we introduce the magnetictor potential [6]:

B=VxA (19)
0A

- 24 (20)

E ot

Substituting (5) and (9) in (8) we get:

- 1 - — = -
Vx;-(B—M)=a(E+17><B) (21)
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Substituting (19) and =0, (21) becomes:
- 1 — - — — -
Vx;-(VxA—M)=a(17 XV x A) (22)
We can rewrite (22) as:
Vx VxA=0-u(® xVxA)+VxM (23)
Considering the Coulomb gau@ - 4 = 0) we obtain:
szf:a-y(—ﬁ xVxﬁ)—ﬁxM) (24)

The magnetic vector potential has only one compbakmgz direction, then the equation

(24) becomes:

924 104 109%4 0A 10M, 1 M,

= su0—+4 = M, - —X 25)
6r2+r6r+r26219 ¢ 619+r a9 r Y or (

Eqn. (25) can be written for each region of the etod

General solution applied in each region of the miode
The general solution of equation (25) considerimg fiorm of the magnetization of the PM
(13) is:

A = Z Ap;isin (np9 + @) (26)
n=1,3,5,...

Thus the calculus can be simplified using the caxplomain, (26) becomes:

A =Im {Z 5 Amei“pﬁ} (27)
n=1,3,5,...

where:
- Im{...} indicates the imaginary part of the complex number
- Ay = AnﬁQQ
The solution in all regions are obtained by apmytine separation of variables method.
In each regions we get:
* Inregion 1 (aluminum billet) equation (25) in tbemplex domain becomes:
9%A; 104,

ot (0t kA = 0 (28)




where:
kz = O-ll'l'l an (29)
thus the solution is:

o 3
4 = Z [clnp]np (ﬁkr)] with j2 = —1 (30)
n=1,3,5,...

whereJ,,, is the Bessel function of first kind and oraer.
* Inregion 2 (air-gap) equation (25) in the compliexnain becomes:

A, = z [Conpt™ + Danpr "] (31)
n=1,3,5,...

* Inregion 3 (permanent magnets) equation (25)ecttimplex domain becomes:

A= Zm [C3npr"p + Dappr ™™ + M] (32)
n=1,3,5,... (np? — 1)

where

M, = npM,,, + My, (33)

In region 4 (iron) equation (26) in the complex domhas the same terms of equation (31)
while in region 5 (external air) the governing efipra contains only the ™" term.

Boundary conditions.
The integration constants ., Conp: Danps Canps Danpr Canps Danp, Dsyp @re computed by
writing the boundary conditions at the interfacén®®=n regions:

= ﬂgj|r=Rij (34)

Ai|r=Rij = AjL'zRij ﬂ9i|r=Rij

wherei, j are the indexes of two regiorl, is the radius at the interface.

Computation of eddy currents and power density.
The induced current density in the complex doms{i6) i

k2
Ji= —ju_lél (35)
Thus the eddy current density in the billet is:
J1(r,9) = Im {bej“pﬁ} (36)
The power loss density is given by:
p(r,0) = LD @7)

And the instantaneous value of the power lossdldrbillet, integrated over the volume of
the cylinder, is:
Ri 27

2
= | ULULINPPN (38)
o

0 0



RESULTS

Some comparisons between the results obtained éwnhlytical formulation and the ones
resulting from the FEM solution are presented i fibllowing for a 8 poles system, solved
with different rotational velocities. The main gestmic dimension of the system, taken into
account as reference for this comparison with egfee to Fig.1, ar&R1 = 100 mm; R2 = 130
mm; R3 = 180 mm ; R4 = 230 mm; a,, the magnet pole-arc to pole-pitch rato30/45 =
0.666; the axial length is set 0.5 m.

The rare earth permanent magnets have a remanesce. BT and a coercive field Hc = 838
kKA/m.
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CONCLUSIONS

In the paper, a comparison between numerical aatitécal methods for the prediction of
current and power density induced in a conductilethnside a rotating magnetic field is
proposed. The two different methods can be usedrder to design and optimize this
innovative technique to heat billets.

The proposed method looks very attractive becatuseercomes the main drawback of the
previously proposed approach where the billet rs€fd to rotate inside a DC induction field
produced by superconductive coils, that requireadaguate refrigerating system. The system
reaches the same efficiency values of the prewopsbposed approach, efficiency that
mainly depends upon the efficiency of the motor &sddriving system, achieving strong
induced power values using a set of rare earth g@enmt magnets instead of a much more
expensive superconductive system.
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