
© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

## Altair Technology Conference Israel 2019



From MBD to FSI – Complete firearm development

Konstantin Arhiptsov, Eitan Maler





- Israeli Weapon Industries (IWI) a world leader in innovative small arms
- Designs, produces and sells small arms
- The IWI product range and accessories are deployed by the IDF and many other leading security organizations.





- Synchronization is necessary for functionality.
- Short time events + very high impacts.
- MotionSolve, Radioss and HyperStudy.



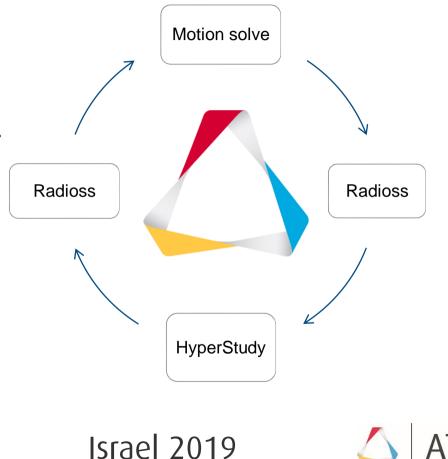








- Every new product being simulated before single part is manufactured.
- Modeling correct boundary conditions is essential for understanding true behavior.

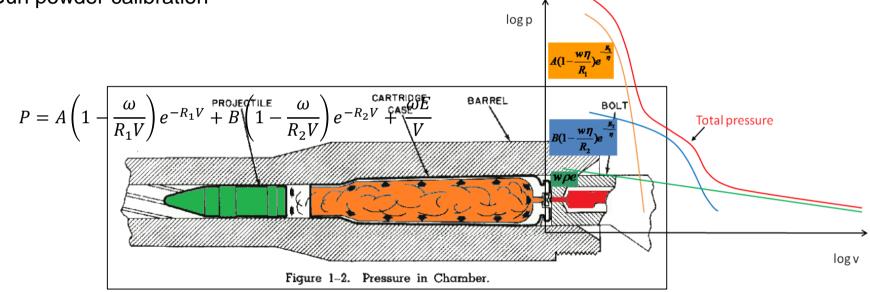







## Problem definition

- Full magazine MBD simulation.
- One cycle Explicit simulation.
- Optimize Non Rigid Boundary conditions.
- Drop/Failure Simulation





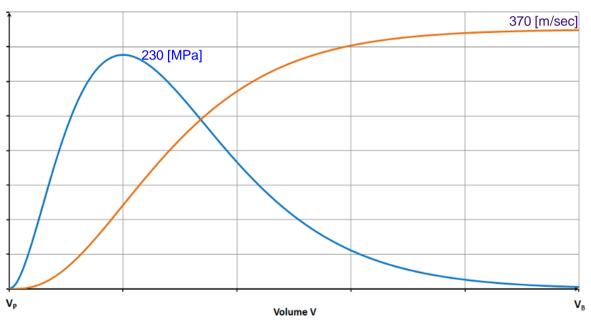

ATCX



Gun powder calibration



Israel 2019




ATCx



• Gun powder calibration

Pressure and Mechanical Work vs. Volume



Israel 2019

-Pressure - Mechanical Work

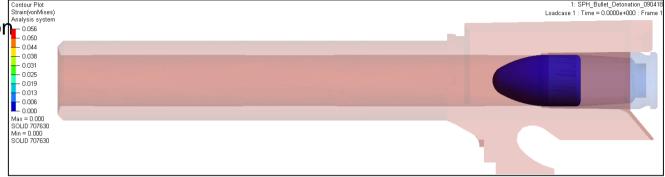


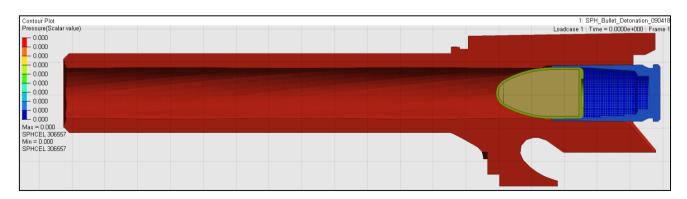
ATCx



#### Gun powder calibration

|                |        |    | <b>Ľ</b> + A | Ľ <u>I</u> + B | .[]+ R1   | "]+ R2    | Ľ[+ w     | <b>Ľ</b> [≁ E0 | 🕼 Response 1 | 🕼 Response 2 |
|----------------|--------|----|--------------|----------------|-----------|-----------|-----------|----------------|--------------|--------------|
|                | 600.00 |    | 190.00000    | 250.00000      | 0.0900000 | 0.5000000 | 0.2000000 | 1680.0000      | -277.76213   | 209.32007    |
| Pressure [MPa] |        |    | 221.35000    | 250.00000      | 0.0900000 | 0.5000000 | 0.2000000 | 1680.0000      | -225.14655   | 194.65614    |
|                | 500.00 | 3  | 190.00000    | 275.00000      | 0.0900000 | 0.5000000 | 0.2000000 | 1680.0000      | -282.85111   | 222.09027    |
|                |        | 4  | 190.00000    | 250.00000      | 0.1048500 | 0.5000000 | 0.2000000 | 1680.0000      | -357.55978   | 272.97784    |
|                | 400.00 | 5  | 190.00000    | 250.00000      | 0.0900000 | 0.5825000 | 0.2000000 | 1680.0000      | -293.64287   | 209.22499    |
|                |        | 6  | 190.00000    | 250.00000      | 0.0900000 | 0.5000000 | 0.2330000 | 1680.0000      | -253.34409   | 197.70091    |
|                | 300.00 | 7  | 190.00000    | 250.00000      | 0.0900000 | 0.5000000 | 0.2000000 | 1957.2000      | -365.70699   | 267.65228    |
|                |        | 8  | 176.02367    | 244.40991      | 0.0961533 | 0.5750000 | 0.1700000 | 1680.6844      | -363.73111   | 255.86688    |
|                | 200.00 | 9  | 175.36000    | 243.14688      | 0.0968790 | 0.6694223 | 0.1920813 | 1680.9086      | -381.13316   | 254.35487    |
|                |        | 10 | 190.76226    | 249.47385      | 0.0976374 | 0.6719971 | 0.1821219 | 1680.0267      | -353.03839   | 251.23351    |
|                |        |    | 190.77017    | 249.12966      | 0.0968378 | 0.7505533 | 0.1774050 | 1680.0299      | -355.51841   | 237.20837    |
|                |        | 12 | 190.80868    | 248.86379      | 0.0997516 | 0.7885713 | 0.1829999 | 1680.0321      | -376.03282   | 255.53828    |
|                |        | 13 | 190.46060    | 248.05991      | 0.0983560 | 0.9500000 | 0.1688477 | 1680.1272      | -380.52596   | 233.29437    |
|                | 0.00   | 14 | 190.52686    | 248.06477      | 0.0972028 | 0.8992631 | 0.1708913 | 1680.1181      | -372.68421   | 235.45137    |
|                | 0.00   |    | 190.52222    | 247.95057      | 0.0965616 | 0.9046006 | 0.1696134 | 1680.1243      | -373.73868   | 236.77994    |
|                |        | 16 | 190.53182    | 248.02716      | 0.0963152 | 0.9017760 | 0.1699531 | 1680.1191      | -366.95678   | 236.13675    |





Israel 2019

**ATC** x



Gun powder calibration







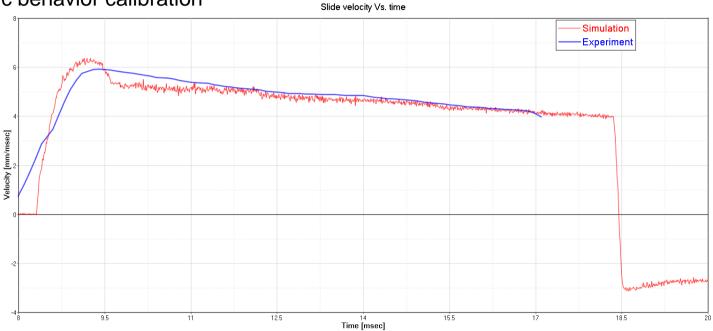




Dynamic behavior calibration










ATCX



Dynamic behavior calibration







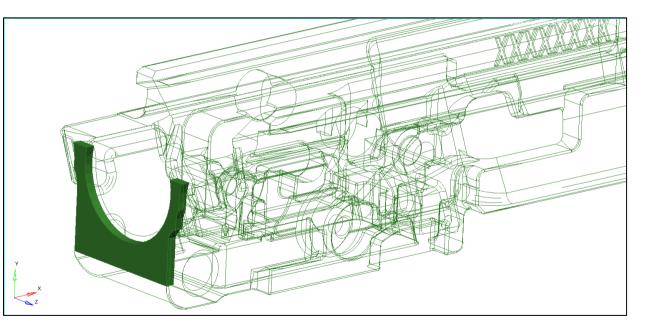


• Using scripted simulation

|                                                                    | "SENSOR"<br>"{sen_3001_distance.idstring}"   |
|--------------------------------------------------------------------|----------------------------------------------|
| <activate<br>element_type=<br/>element_id=<br/>/&gt;</activate<br> | "SENSOR"<br>"{sen_3001_for_return.idstring}" |
|                                                                    | "Transient"<br>"40"<br>"0.25"                |
| </td <td>system equilibrium</td>                                   | system equilibrium                           |
|                                                                    | "SENSOR"<br>"{sen_3001_for_return.idstring}" |

 $\searrow$ 







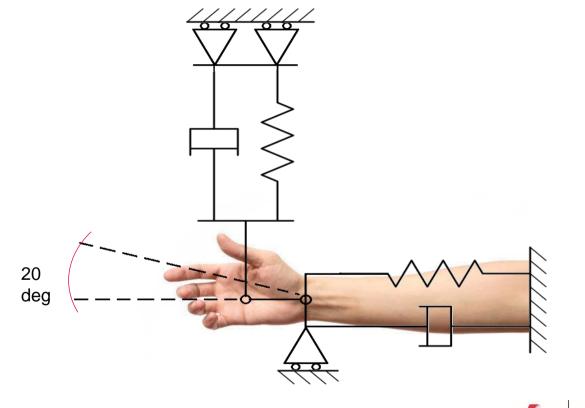



- Using localized contacts
- Meshing only valuable for contact regions
- Faster run times
- Less numerical problems
- Runtime –

40 msec in 12 minutes







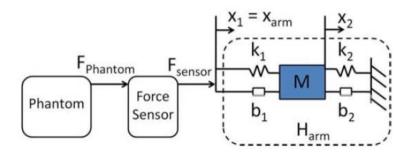



TCx



 Human hand is a set of Spring-dampers










Michael J. Fu, IEEE M. Cenk Cavusoglu

*"Human Arm-and Hand Dynamics Model with Variability Analyses for a Stylus-base Haptic Interface "* 



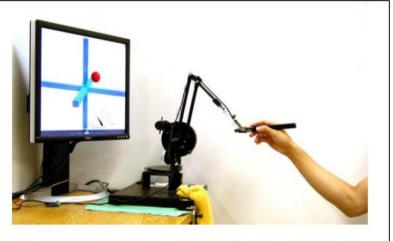



Fig. 1. The experimental setup and arm configuration used for the human experiment data collections.







### Non Rigid Boundary Conditions (NRBC's)

Human Arm-and Hand Dynamics Model with Variability Analyses for a Stylus-base Haptic Interface

Michael J. Fu, IEEE M. Cenk Cavusoglu

| TABLE I                                                |
|--------------------------------------------------------|
| Arm Structure Parameters – Grip Force Dependent Models |

| X-axis | M (kg) | $k_1$ (N/m) | $k_2$ (N/m) | $b_1 \text{ (N-s/m)}$              | $b_2 \text{ (N-s/m)}$ |
|--------|--------|-------------|-------------|------------------------------------|-----------------------|
| 1N     | 0.2892 | 428.4       | 99.45       | 2.998                              | 5.802                 |
| 2N     | 0.2869 | 448.6       | 93.93       | 2.443                              | 5.698                 |
| 3N     | 0.2731 | 455.5       | 96.17       | 2.325                              | 5.629                 |
|        |        |             |             |                                    |                       |
| Y-axis | M (kg) | $k_1$ (N/m) | $k_2$ (N/m) | $b_1 \text{ (N} \cdot \text{s/m)}$ | $b_2 \text{ (N-s/m)}$ |
| 1N     | 0.4602 | 469.69      | 121.8       | 7.063                              | 5.996                 |
| 2N     | 0.3892 | 625.94      | 122.2       | 5.996                              | 6.005                 |
| 3N     | 0.4186 | 671.20      | 126.0       | 5.858                              | 6.410                 |
|        |        |             |             |                                    |                       |
| Z-axis | M (kg) | $k_1$ (N/m) | $k_2$ (N/m) | $b_1 \text{ (N-s/m)}$              | $b_2 \text{ (N-s/m)}$ |
| 1N     | 0.2115 | 843.1       | 323.9       | 0.7093                             | 19.42                 |
| 2N     | 0.2525 | 868.3       | 332.8       | 0.5882                             | 19.90                 |
| 3N     | 0.2353 | 855.1       | 355.1       | 0.4925                             | 20.56                 |

#### TABLE II Nominal Arm Model Parameters

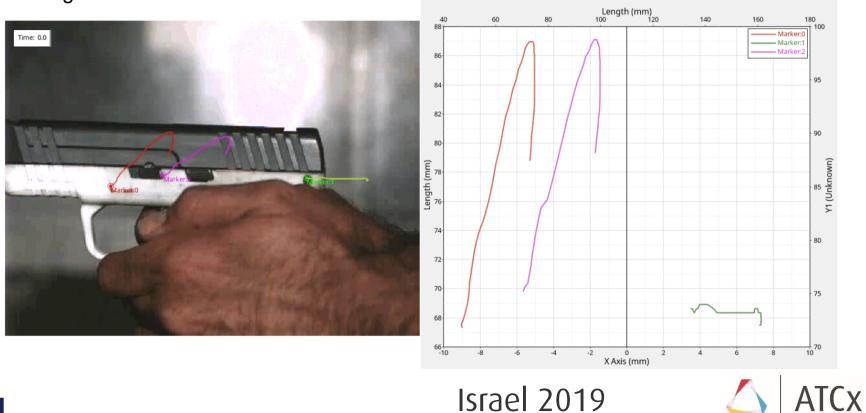
| Axis   | M (kg) | $k_1$ (N/m) | $k_2$ (N/m) | $b_1 \text{ (N-s/m)}$ | $b_2 (N \cdot s/m)$ |
|--------|--------|-------------|-------------|-----------------------|---------------------|
| X-axis | 0.2179 | 379.5       | 78.75       | 1.839                 | 4.645               |
| Y-axis | 0.2692 | 552.4       | 105.3       | 3.609                 | 6.430               |
| Z-axis | 0.2041 | 769.9       | 271.7       | 0.7764                | 18.06               |

Israel 2019







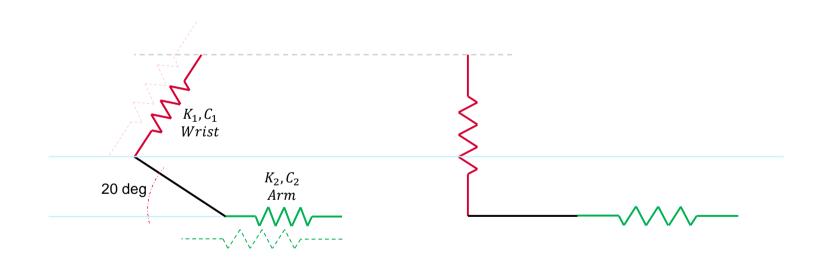






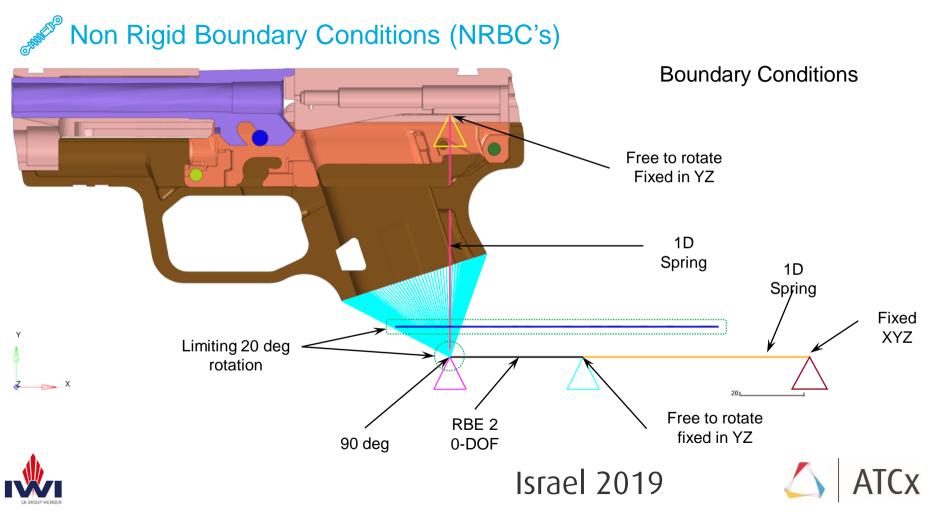

Measure Plot

# HyperStudy • Target

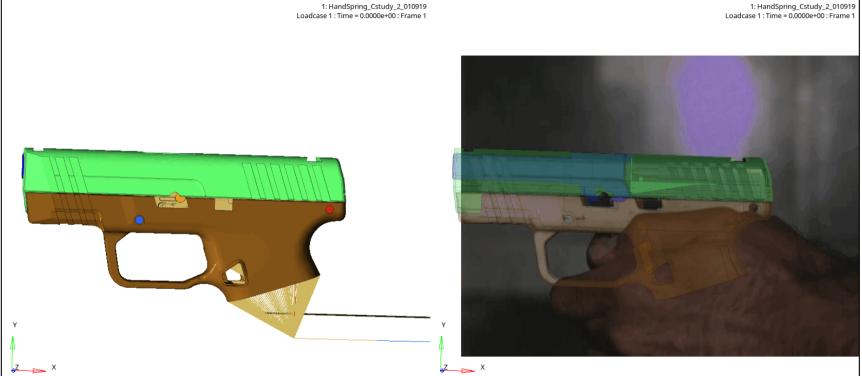








ATCX

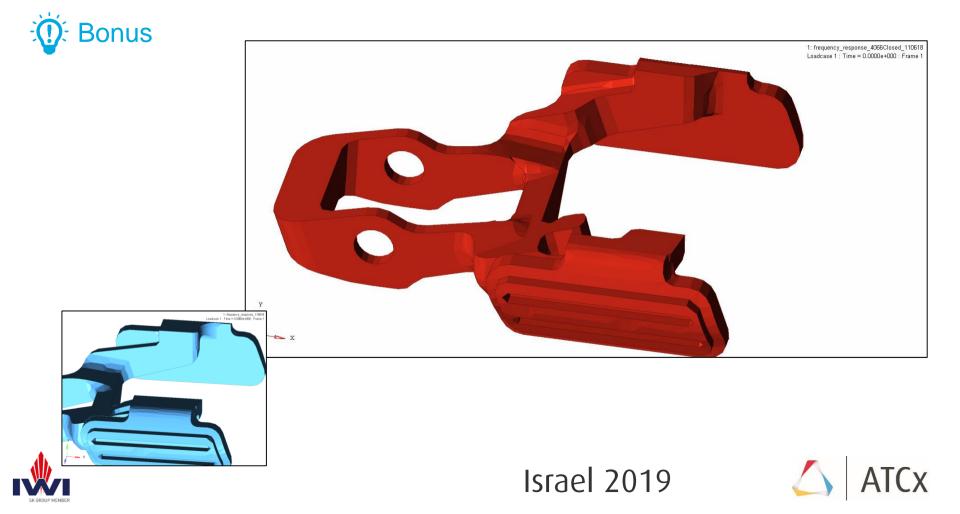
- HyperStudy
  - Parameters






















- Complete firearm development using Altair HyperWorks
- HyperStudy a valuable tool
- NRBC's better approximation to the real conditions





