
VisSim Training

7. Fixed Point Arithmetic &

Filters

1

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Topics:

2

• Fixed Point BlockSet

• Fixed Point Fundaments Video

• Configuring a Fixed Point Block, “const” example

• Displaying Overflow Messages

• Using the Autoscale Feature

• Autoscale Video

• Code Generation, commenting, in line functions

• %CPU Utilization Example – discrete filter

• Discrete fixed point filter %CPU Comparison Video

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Fixed Point Blockset

The 33 element VisSim EMBEDDED fixed

point blockset (“Blocks/ Fixed Point”) is used to

design and simulate performance of fixed point

algorithms prior to codegen and execution on

an embedded platform.

Fixed Point Block Features:
• Automatic radix point scaling

• Overflow alerts

• High & Low levels to determine optimal radix point

settings

• Master control for all fixed point blocks

Fixed Point Code Generation Features:
• Highly efficient code using in-line shifts

• Automatic commenting to enhance readability

Fixed Point Menu

Fixed Point Fundamentals Video

3

VisSimEmbeddedTrainingModels/00 FixedPointMenu.vsm
Models and Videos - Section 4/00 FixedPointMenu.vsm
VisSim Embedded Training Models/00 FixedPointMenu.vsm
https://youtu.be/ZeTBLS-0Wqc

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Fixed Point Configuration - “const” block

Radix Point (bits): Analogous to the decimal point in a base 10 number.

Word Size (bits): Total number of bits in the fixed point number, set equal

to the wordsize for the Target architecture.

Example: 4.16 =

Maximum Value = 0111.1111111111111111 = 7.9997558594

Minimum Value = 1000.00000000000000 = -8

Representable Range: -8 to 7.9997558594

Const: Entered in floating point representation.

Precision: Smallest step (difference) between two consecutive N bit number values

Example: 4.16: precision = 2^-12

Example: 1.16: precision = 2^-15

Fixed point targets only recognize integer values. VisSim EMBEDDED codegen automatically

converts decimal numbers to scaled integer values based on the Radix Point and Wordsize settings.

Comments, indicating the original Const value, are added to VisSim EMBEDDED codegen on each

conversion

Auto scale: Resets the “Representable Range” when the maximum or minimum values are exceeded.

Warn on overflow: Presents a dialog box indicating an overflow (used in conjunction with “Fixed Point

Block Set Configure…”)

Min Val Seen & Max Val Seen: watermarks of minimum and maximum values passed through the block

const block properties
4

VisSimEmbeddedTrainingModels/01 ConstBlockProperties.vsm
VisSim Embedded Training Models/01 ConstBlockProperties.vsm

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Fixed Point Block Set Configuration

The “Fixed Point Block Set Configuration” (“Tools/Fixed Point Block Set

Configure…”), is used to set global conditions on all fixed point blocks used in a

model.

Override Word Size: Overrides the local wordsize in all fixed point blocks in the model with the Word Size

(bits) value dropdown. NOTE: the Word Size (bits) dropdown is used on when the Override Word Size is

checked.

Enable Auto scaling: turns on autoscaling for all model fixed point blocks in the model that have their Auto

scale option checked.

Reset Radix Point at Sim Start: resets the radix point in all model fixed point blocks to 0 at the start of a

simulation. NOTE: use of this option with the Auto scale option (in fixed point blocks) identifies the range

that produces the highest precision for each fixed point operation.

Enable Overflow Alert Messages: Turns on the overflow alert message for all fixed point blocks whose

Auto scale option is checked.

Code Generation Example
5

VisSimEmbeddedTrainingModels/03 CodeGenerationCommentingInLineShifts.vsm
VisSim Embedded Training Models/03 CodeGenerationCommentingInLineShifts.vsm

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Displaying Overflow Messages

1. In the “Fixed Point Block Set

Configuration” (“Tools/Fixed

Point Block Set Configure…”),

check the “Enable Overflow

Alert Messages”

2. In the fixed point “gain” block, “Fixed Point Gain Block Properties”,

check the “Warn on overflow”

Overflow: The situation where the minimum or maximum value exceeds the

“Representable Range”. Use the following procedure to observe overflow in a

fixed point “gain” block.

In the “Fixed Point Gain Block Properties”, the Min Val Seen and

Max Val Seen display the high and low water marks of values that

have passed through the block.

3. Apply a “slider” input =

+/-100, Click “Go” to run the

simulation, an overflow is

detected and the following

message will be displayed:

Fixed Point Overflow Example 6

VisSimEmbeddedTrainingModels/04 DisplayingOverflowMessages.vsm
Models and Videos - Section 4/04 DisplayingOverflowMessages.vsm

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Using the Autoscaling Feature

1. A model is created consisting of a:

“sawtooth” with “Amplitude” = 200 from

(“Blocks/Signal Producer”)

“const” from (Blocks/Fixed Point”)

“add” from (“Blocks/ Fixed Point”)

“gain” from (“Blocks/ Fixed Point”)

2. Each fixed point block is configured

as shown to the right:

For each fixed point block, VisSim EMBEDDED maximizes precision by selecting

the smallest acceptable range for each fixed point block in a model.

3. In the “Fixed Point Block Set

Configuration” (“Tools/Fixed Point

Block Set Configure…”), check the

“Enable Auto Scaling” option.

4. Click “Go” to run the simulation, the fixed point blocks being autoscaled whose output value exceeds

the Min Val Seen or Max Val Seen will turn red, at the end of the simulation, each fixed point block will

display the modified radix point value that provides an acceptable Representable Range for the

simulation signals.

Reset Radix Point Example Autoscale Video 7

VisSimEmbeddedTrainingModels/05 AutoscalingFeature.vsm
VisSim Embedded Training Models/05 AutoscalingFeature.vsm
https://youtu.be/Vz4JRYmHTiE
https://youtu.be/Vz4JRYmHTiE

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Code Generation – Commenting, Inline Shifts

To view the automatic commenting and efficient execution features of VisSim

EMBEDDED fixed point code generation, we will illustrate code gen for a simple

model using a “Host” Target.

2. Configure “Code Generation Properties” under (“Tools/ Code Gen…”) as

shown to the right. Click “Code Gen”, then “View…”

Scaled Integer:

-2.81@fx8.16 =

-719 = (-2.81/(2^-8) = -719)

1. VisSim model consisting of “const”

and “gain” blocks (“Blocks/Fixed

Point”), and “display” (“Blocks/ Signal

Consumers”)blocks.

3. The Code Gen “c” file will

appear in “notepad”

Comment of original floating point

value

Inline shifts (multiply & divide) of

scaled integers for efficient

execution.

8

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Fixed Point Arithmetic – CPU Utilization Example

9

This example illustrates the CPU time savings using fixed point arithmetic instead of floating point to

implement a digital filter.

The digital filter transfer function is:

The digital update time is: 0.001 seconds.

Two versions of the digital filter transfer functions are implemented,

Digital Filter – FLOATING POINT

Digital Filter – FIXED POINT

The input to each filter is attached to analog input 0 which is pinned out on the F28069M LaunchPad

board. By placing your finger between J1 and J3 pins on the LaunchPad, an analog input signal is

created.

The top level VisSim model has the two digital filters in the compound block

“DigitalFiltersFixedAndFloatingPoint”

Two state “button” selects

what filter is active
Contents of “DigitalFiltersFixedAndFloatingPoint”

Note: “buttonInput” selects either filter

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

CPU Utilization Example - Filter Configurations

10

Digital Filter – FLOATING POINT

Transfer Function Properties

Fixed Point Format Selected 8.32

Digital Filter – FIXED POINT

Transfer Function Properties

Fixed Point Filter Video

View source model in VisSim

https://youtu.be/eXuwno2qunc
https://youtu.be/eXuwno2qunc
VisSimEmbeddedTrainingModels/FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm
Models and Videos - Section 3/FixedPointVersusFloatingPointDigitalFilterCPUUsage.vsm

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

CPU Utilization Example - Results

11

Code is generated for the “DigitalFiltersFixedAndFloatingPoint” compound block and executed in the

“target Interface” (below).

Floating Point CPU Utilization = 17%

Fixed Point CPU Utilization = 2%

Similar filter output results

View debug model in VisSim

NOTE: Up until now, we have developed separate "Source" and "Debug" models. When the JTAG

communication transfer speed can is sufficient (for the model being used) it is possible to combine the

"Source" and "Debug" models into one "Source" model which includes the "target Interface".

VisSimEmbeddedTrainingModels/FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm
VisSim Embedded Training Models/FixedPointVersusFloatingPointDigitalFilterCPUUsage-d.vsm

Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Summary

• When a target does not support hardware multiply or divide, the operations must be performed in software.

• A software divide is approximately 100x slower than a hardware multiply, add, or shift

• A software square root involves several divide iterations and is approximately 200x to 300x slower than a

hardware multiply, add, or shift

• Using Fixed Point arithmetic greatly reduces the CPU Utilization required for software multiplies, divides, and other

complex operations.

• In the digital filter example, the fixed point implementation used 1.8% CPU while the floating point

implementation used 16.76% CPU, almost a factor of 10x savings in %CPU Utilization.

• VisSim EMBEDDED Fixed Point blockset provides an easy and efficient way to migrate control algorithms to fixed

point implementations that meet target hardware limitations and CPU Utilization requirements.

12

Thank You

For more information please visit;

http://www.altairhyperworks.com

Search for VisSim under the Products category

13

http://www.altairhyperworks.com/

