# Design the Future e-Mobility

Altair HyperWorks Electromechanical Workflow for the Design of Electric Motor Powertrain

Philippe Wendling, VP, Business Development-Electromagnetics Richard Yen, SVP, Global Automotive and Industry Verticals Team Altair

April 11 2019

#### AGENDA

- **E-Mobility Trends and Challenges** 
  - **2** Altair's Vision and Workflow
  - 3 E-Motor Design Process
  - 4 Looking Forward

© 2018 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

### **MOBILITY TRENDS AND CHALLENGES**

**Richard Y.** 

### Today's Products are Complex

### Connected & Automated



### ... E-MOBILITY

Transportation OEM need sustainable technologies to meet customer demands: Safer, Lighter, Greener, Smarter Vehicles



#### "GM's vision is a world with zero crashes, zero emissions and zero congestion."

"GM believes the future of personal mobility will be driven by the convergence of electrification, autonomous vehicles, connectivity and shared mobility services."

--Mary Barra, CEO of General Motors



#### **INDUSTRY TRENDS ON ELECTRIFICATION (1)**



Note: BEV = battery electric vehicle; PHEV = plug-in hybrid electric vehicle. Stock shares are calculated based on country submissions and estimates of the rolling vehicle stocks developed for the IEA Mobility Model. The vehicle stocks are estimated based on new vehicle registration data, lifetime range of 13-18 years, and vehicle scrappage using a survival curve that declines linearly in the last five years of the active vehicle life. Lifetimes at the low end of the range are used for countries with higher income levels (and vice versa).

 $\bigtriangleup$ 

Source: IEA analysis based on country submissions, complemented ACEA (2018), EAFO (2018a).

#### **INDUSTRY TRENDS ON ELECTRIFICATION (2)**



Notes: The 2020 and 2025 projections from original equipment manufacturers are based on their announcements as outlined in Table 2.5. The production capacity of OEMs in China has been capped at 5.2 million vehicles both in 2020 and 2025. This cap is calculated considering the 7.7 million vehicle capacity announced for 2020 (Liu, 2018) and a 66% capacity utilisation factor, aligned with the ratio of vehicle production in China and capacity available in recent years (IHS Markit, 2015). The lower bound of vehicle production in China for 2020 was assumed to be 2 million, well below the capacity assessed to become available in the same year. For companies that announced the deployment of a number of models, the assumptions made in this analysis consider a sales-to-model ratio range of 10 000-30 000 in the 2020 timeframe and 30 000-50 000 in 2025.

Source: IEA analysis developed with the IEA Mobility Model (IEA, 2018a).

#### Comparison of scenario projections and manufacturers' targets for electric LDVs, 2017-30

#### AUTOMOTIVE – ALTAIR'S STRATEGIC SOLUTIONS



- Connected and Automated Mobility
- 3 Design for Efficiency
- Safety, Comfort and Perceived Quality
  - Solution Oriented Innovation

Industry domain knowledge + Integrated design process + Optimization





#### **DESIGN THE FUTURE OF E-MOBILITY**



#### **New Key Elements**

- Electric Motor
- Battery
- Power Electronics -Inverter
- System Modeling and Control

**Challenges:** 

- Packaging and Weight Distribution
- New Requirements and Physics
- Complex System

#### CHALLENGES FOR E-PROPULSION DESIGN

- Stringent performance requirements Advanced OEMs are trying to set them apart from competition
- Stricter regulations (WLTP) Maximize efficiency throughout the e-propulsion system
- Multiphysics design to balance cost, time, size, weight and performance
- Integrated solution across departments with different disciplinary requirements

![](_page_9_Figure_6.jpeg)

© 2018 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

### **ALTAIR'S VISION AND WORKFLOW**

![](_page_10_Picture_2.jpeg)

#### SIMULATION-DRIVEN DESIGN – AN OVERVIEW

![](_page_11_Figure_2.jpeg)

### SIMULATION-DRIVEN INNOVATION

![](_page_12_Picture_2.jpeg)

Powerful Modeling & Visualization

![](_page_12_Picture_4.jpeg)

Cloud Collaboration & Data Analytics

![](_page_12_Picture_6.jpeg)

High Performance Computing

![](_page_12_Picture_8.jpeg)

Value-based Business Model

**Global Expertise** 

#### THE E-MOTOR DESIGN PROCESS

![](_page_13_Picture_2.jpeg)

Rapid Design Exploration and Ranking

#### **Detailed Design**

Multi-Physics Optimization EM, Structural, Thermal

#### Responses

Power, Torque, Torque Ripples, Max Speed, Losses, Temperatures, Demagnetization, Stress

Scenario Individual Working Points

![](_page_13_Picture_9.jpeg)

![](_page_13_Figure_10.jpeg)

![](_page_13_Figure_11.jpeg)

#### ALTAIR'S COMPLETE PLATFORM FOR E-MOTOR INNOVATION

- An integrated workflow for model based multi-physics optimization design
- Disruptive to traditional design process through machine learning
- Speed to market with balanced design and confidence
- Flexible process for customization and ease of use

![](_page_14_Figure_6.jpeg)

#### ALTAIR SOLVER TECHNOLOGY

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

© 2018 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

### **E-MOTOR DESIGN PROCESS**

Philippe W.

### **DESIGN SPECIFICATIONS**

#### Specifications

- Stator diameter :
- Active length :
- Iron fill factor :
- Magnet :
- Tmax winding
- Tmax rotor :
- Maximum speed :
- Minimum power :
- Max phase voltage :
- Max phase current :
- DC-link voltage :

DIAM LENGTH 0.92 Br 1.15 T 200°C 180°C MAXS rpm 170kW 241V 300A 650V, 800V

#### Objectives

- Maximum power (base point)
- Minimize torque ripple

### Constraints

- Demagnetization at base point
- Mechanical strength
- Temperature of winding lower than 200°C

The stator topology is set.

The rotor topology is open

# MULTI-DISCIPLINARY/PHYSICS OPTIMIZATION – GENERIC OVERVIEW

![](_page_18_Figure_2.jpeg)

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

## FLUXMOTOR PROJECT BASE DESIGN

![](_page_19_Picture_2.jpeg)

#### **MOTOR BASELINE**

![](_page_20_Figure_2.jpeg)

| Rotor Selection        |                    |         |         |         |  |  |  |
|------------------------|--------------------|---------|---------|---------|--|--|--|
|                        | Rotor A            | Rotor B | Rotor C | Rotor D |  |  |  |
|                        | Ø                  |         |         | Ø       |  |  |  |
| Current den<br>(A/mm2) | 31,1               | 31,1    | 31,1    | 31,1    |  |  |  |
| Torque (Nm)            | 181                | 164     | 165     | 162     |  |  |  |
| Power (kW)             | 195                | 186     | 185     | 180     |  |  |  |
| Base speed (rpm)       | speed (rpm) 10.290 |         | 10.670  | 10.610  |  |  |  |
| Efficiency (%)         | 96,0               | 95,9    | 95,9    | 95,7    |  |  |  |
| Magnet weight (Kg)     | 2,54               | 2,48    | 2,48    | 2,53    |  |  |  |

![](_page_20_Picture_4.jpeg)

#### FIRST OPTIMIZATION FLUXMOTOR: MINIMIZE CURRENT

#### Goal:

- Maximize base torque more than 150 N.m.
- Minimize current at 100 kW (initial value 205 A)

![](_page_21_Figure_5.jpeg)

![](_page_21_Figure_6.jpeg)

With 174 A, we obtain the target torque, helping the temperature constraints

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

# **DOE WORKFLOW**

![](_page_22_Picture_2.jpeg)

#### LOAD CASES

#### Base point

- Identify base point
- Average torque and torque ripple
- Short-circuit test, risk for demagnetization

#### Max speed max torque

• Average torque and torque ripple, losses

# Max speed 100 kW : check temperature after 2 hours

- Magnetic analysis: losses
- 2D Thermal analysis: temperature after 2 hours

Stress : check stress at MAXS rpm on rotor only

![](_page_23_Figure_12.jpeg)

![](_page_23_Picture_13.jpeg)

#### WORFLOW TO COMPUTE ONE SINGLE SAMPLE

![](_page_24_Figure_2.jpeg)

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

# SETTING THE LOAD CASES

![](_page_25_Picture_2.jpeg)

### FLUX BASE POINT

#### Input

- Rotor geometric parameters
- Base speed,
- Base line current,
- Base control angle

#### Output

- Base torque,
- Base torque ripple,
- Generate \*.STEP file (for OptiStruct analysis)

![](_page_26_Figure_11.jpeg)

### FLUX SHORT-CIRCUIT AT BASE SPEED

#### Input

- Rotor geometric parameters
- Speed
- Base line current,
- Base control angle

#### Output

• Demagnetization

![](_page_27_Figure_9.jpeg)

#### FLUX MAX SPEED

#### Input

- Rotor geometric parameters
- Speed
- Max speed line current
- Max speed control angle

#### Output

- Max speed torque
- Max speed ripples

![](_page_28_Figure_10.jpeg)

![](_page_28_Figure_11.jpeg)

### FLUX 100KW AT MAX SPEED

#### Input

- Rotor geometric parameters
- Speed, current, angle

#### Output

 Losses (core losses rotor and stator, winding Joule losses, eddy current magnet)

![](_page_29_Figure_7.jpeg)

![](_page_29_Figure_8.jpeg)

#### **2D THERMAL ANALYSIS**

#### Test after 2 hours

#### Input :

- Rotor geometric parameters
- Losses

#### Output

- Temperature in magnets (max)
- Temperature in winding (T < 180°C)</li>

![](_page_30_Figure_9.jpeg)

![](_page_30_Figure_10.jpeg)

#### STRESS ANALYSIS MAXS

## Starting from geometry in step file

Input

• STEP file

#### Output

• Max value of stress (must be lower than 500 MPa)

![](_page_31_Figure_7.jpeg)

![](_page_31_Picture_8.jpeg)

### **GLOBAL OPTIMIZATION**

#### Goal:

- Maximize base torque
- Minimize torque ripple

#### Constraint:

- Stress lower than 500 MPa
- Winding temperature lower than 180°C
- Demagnetization lower than 5%
- Torque greater than 150 Nm

![](_page_32_Picture_10.jpeg)

#### DOE OUTLINE

# Summary of Optimization Problem in HyperStudy

|   | 🛨 Add Model | 🙁 Remove Mod  | del 😽 N | Nodel Resources |     |            |  |
|---|-------------|---------------|---------|-----------------|-----|------------|--|
|   | Active      | Label         | Varname | Model Type      | So  | lving time |  |
| 1 |             | FluxMotor     | m_1     | M FluxMotor     | 2,5 | minutes    |  |
| 2 |             | base_speed    | m_2     | 🔎 Flux          | 4   | minutes    |  |
| 3 |             | Max_Speed     | m_3     | 🔎 Flux          | 4   | minutes    |  |
| 4 |             | Short_circuit | m_4     | 🔎 Flux          | 6   | minutes    |  |
| 5 |             | 100_kW_MAx_S  | m_5     | 🔎 Flux          | 4   | minutes    |  |
| 6 |             | Thermal       | m_6     | 🔎 Flux          | 6   | minutes    |  |
| 7 |             | HyperMesh     | m_7     | Operator        | 10  | seconds    |  |
| 8 |             | OptiStruct    | m_8     | Operator        | 2   | minutes    |  |

DOE Study

29

minutes

- 18 Design Variables
- Approximately 400 runs
- 18h with 15 cores in parallel

![](_page_33_Picture_8.jpeg)

![](_page_33_Figure_9.jpeg)

### **GLOBAL OPTIMIZATION**

#### 2 Objectives

- Min Torque Ripples
- Max Power

![](_page_34_Figure_5.jpeg)

#### 4 Constraints

- Demagnetization < 5 %</li>
- Base torque >= 150 Nm

![](_page_34_Figure_9.jpeg)

- Temperature winding <180°C
- Max stress <= 500 Mpa

![](_page_34_Figure_12.jpeg)

#### 400 RUNS - SENSITIVITY

![](_page_35_Figure_2.jpeg)

#### **GLOBAL OPTIMIZATION : DESIGN OF EXPERIMENT**

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

## **OPTIMIZATION**

![](_page_37_Picture_2.jpeg)

#### USING FIT FOR DIFFERENT OPTIMIZATIONS

#### 2 objectives

- Max power
- Min torque ripple

- 4 constraints
  - Max stress <= 500 MPa
  - Demagnetization <= 5 %
  - Temperature winding <180°C
  - Base torque => 150 Nm

| 500 iterations 12 points per iteration |     |        |           |        |          |             |             |           |           |           |           |
|----------------------------------------|-----|--------|-----------|--------|----------|-------------|-------------|-----------|-----------|-----------|-----------|
| DE                                     | MAG | stress | T_winding | Torque |          | Objective 1 | Objective 2 | STRESS    | DEMAG     | WINDING   | TORQUE    |
|                                        | 5   | 500    | 180       | 145    | optimal  | 185558.05   | 3.3028670   | 500.11439 | 5.0013581 | 130.90805 | 144.89983 |
|                                        | 5   | 500    | 180       | 150    | violated | 185508.19   | 3.6410141   | 507.49310 | 5.0686687 | 129.17836 | 144.97804 |
|                                        | 5   | 550    | 180       | 150    | violated | 187568.45   | 3.0975566   | 558.08334 | 5.0524471 | 135.21758 | 146.80096 |
|                                        | 5   | 600    | 180       | 150    | violated | 187670.12   | 4.5006536   | 603.67138 | 5.0290165 | 134.09146 | 148.13142 |
|                                        | 5   | 650    | 180       | 150    | optimal  | 189735.28   | 4.3846638   | 651.65516 | 5.0097176 | 137.21773 | 149.29942 |
|                                        | 6   | 500    | 180       | 150    | violated | 187886.74   | 3.6127883   | 504.44520 | 6.0462309 | 132.34385 | 147.29856 |
|                                        | 7   | 500    | 180       | 150    | violated | 189568.45   | 4.0627783   | 502.64007 | 7.0298307 | 134.11429 | 148.39414 |
|                                        | 7,5 | 500    | 180       | 150    | optimal  | 190711.88   | 3.3218627   | 499.97401 | 7.4943515 | 136.39664 | 150.02709 |
|                                        | 7,2 | 500    | 180       | 150    | optimal  | 190256.56   | 3.4551889   | 500.39643 | 7.2047921 | 135.50755 | 149.77043 |

Note: with fit, one optimization takes less than 2 minutes with 500 runs

#### E-MOTOR OPTIMIZATION PROBLEM – FINAL RESULTS

|                         | Initial |  |  |
|-------------------------|---------|--|--|
| Base torque [Nm]        | 155     |  |  |
| Base torque Ripple [Nm] | 8,5     |  |  |
| Stress [Mpa]            | 2.316   |  |  |
| Winding Temp. [°C]      | 171     |  |  |
| Demagnetization Factor  | 6,6     |  |  |

В

![](_page_39_Picture_3.jpeg)

#### Optimization Objective:

- Maximize base output Power
- Minimize base Torque Ripple

#### • Constraints:

- Stress lower than 500 MPa
- Winding Temperature lower than 180°C
- Demagnetization lower than 5%
- Base Torque greater than 150 Nm

Magnet Weight Reduction of 40 %

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

### TO GO FURTHER: INCLUDE DRIVE

![](_page_40_Picture_2.jpeg)

#### FIELD ORIENTED CONTROL STEPS: OVERVIEW

![](_page_41_Figure_2.jpeg)

#### PROCESS: ACTIVATE INVERTER INPUTS TO FLUX

![](_page_42_Figure_2.jpeg)

Use simplified motor model in Activate to generate steady-state current

#### E-MOTOR OPTIMIZATION PROBLEM – FINAL RESULTS WITH PWM

|                         | Initial | Current Optimum<br>With Sine Current |  |  |
|-------------------------|---------|--------------------------------------|--|--|
| Base torque [Nm]        | 155     | 150                                  |  |  |
| Base torque Ripple [Nm] | 8,5     | 5,4                                  |  |  |
| Stress [Mpa]            | 2.316   | 500                                  |  |  |
| Winding Temp. [°C]      | 171     | 139                                  |  |  |
| Demagnetization Factor  | 6,6     | 5,2                                  |  |  |

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

Magnet Weight Reduction of 40 %

#### (\*) TEMPERATURES USING PWM CURRENT

![](_page_44_Figure_2.jpeg)

Added losses leads to 20 % higher temperatures in magnets and rotor yoke

#### SUMMARY

#### Multi-physics optimization of E-motor including:

- Predesign of motor FluxMotor
- Magnetic analysis Flux
- Thermal analysis Flux
- Structural analysis OptiStruct

#### DOE and optimization driven by HyperStudy Extension system - Activate

![](_page_45_Picture_8.jpeg)

![](_page_45_Picture_9.jpeg)

![](_page_45_Picture_10.jpeg)

![](_page_45_Picture_12.jpeg)

© 2018 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

### LOOKING FORWARD

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

#### A COMPLETE MODEL BASED MULTIPHYSICS OPTIMIZATION WORKFLOW

![](_page_47_Figure_2.jpeg)

#### **EVALUATION OF WLTP – DRIVE CYCLE EFFICIENCY**

BEV\_v6.scm - Altair Activate Professional Edition 2019.1

![](_page_48_Figure_3.jpeg)

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

# Thank you !

For more information about Altair tools, please visit <u>www.altairhyperworks.com</u>

![](_page_49_Picture_3.jpeg)