Analysis of Static Eccentricity Faults in Double Stator Single Rotor Axial Flux Surface-mounted Permanent Magnet Motors

Shuvajit Das & Md Tawhid Bin Tarek

ECE Department The University of Akron Akron, USA

Presentation outline

- Motivation.
- Axial Flux Machine.
- Static Eccentricity in the Motor.
- Static Eccentricity in AFM.
- Studied Machine.
- Simulation Setup.
- Eccentricity Simulation Issues.
- Mesh Structure for Simulation.
- Simulation Results.
- Conclusion & Future Works.

Axial Flux Machine (AFM)

Motivation

- Axial Flux Machines (AFM) are ideal for compact applications with large diameters.
- High performance in pancake-shaped applications.
- High power and torque density.
- However, low contact area between the rotor and shaft makes AFM more susceptible to mechanical defects like eccentricity.
- Eccentricity can generate vibration and unbalanced magnetic force (UMF) which affect the performance and lifetime of the motor.
- So, analysis of eccentricity is important for AFM.

Axial Flux Machine

- Better utilization of rotor volume.
- Double layer concentrated winding structure.
- Lower weight and winding resistance compared to distributed winding structure.
- Double stator single rotor (DSSR) structure has benefits of higher torque density and balanced axial force.
- NS magnet type can increase torque density further.

NN Structure

Stator back iron

Rotor back iron

Stator back iron

Rotor back iron

Flux directions of the proposed machine

Static Eccentricity in the Motor

- Eccentricity exists when rotor geometric axis and stator geometric axis are not aligned.
- Due to eccentricity, the airgap in the motor becomes non-uniform.
- Among the types of eccentricities, static eccentricity is the simplest one.
- In the static eccentricity, the airgap becomes non-uniform whereas the points of maximum and minimum airgap are fixed.

Healthy Radial Flux Motor

Static Eccentricity in Radial Flux Motor

Static Eccentricity in AFM

- However, the concept of eccentricity is different for AFM.
- Static space eccentricity can be defined as [1]: $\% ECC = \frac{g_s}{g_o} \times 100\%$
- Static angle eccentricity can be measured as [2]: %SEF = $\frac{g_{\text{max}} g_{\text{min}}}{2g_o} \times 100\% = \frac{R_{\text{mid}} \times \sin \beta}{g_o} \times 100\%$
- Combined eccentricity can be generated by applying both space and angle eccentricity.

^[1] Y. Huang, B. Guo, Y. Guo, J. Zhu, A. Hemeida and P. Sergeant, "Analytical modeling of axial flux PM machines with eccentricities", *International Journal of Applied Electromagnetics and Mechanics*, vol. 53, no. 4, pp. 757-777, 2017.

^[2] S. M. Mirimani, A. Vahedi, F. Marignetti and R. Di Stefano, "An Online Method for Static Eccentricity Fault Detection in Axial Flux Machines," in *IEEE Transactions on Industrial Electronics*, vol. 62, no. 3, pp. 1931-1942, March 2015.

Studied machine

- 12 Slot 10 Pole (12s/10p) AFM with NS configured permanent magnets.
- NS configuration is used to improve the volumetric torque density.
- High airgap flux density.
- Lower cogging torque.

Case study machine

- Automotive application
- Double stator single rotor structure
- 58 KW continuous power
- 70 kW peak power for 20 seconds

The University of Akron - College of Engineering

Simulation setup

- Usual modeling of electric machines are done with periodicity and symmetry.
- 12s/10p can be drawn using an odd periodicity of 2 about the Z-axis and a symmetry about the x-y plane.
- Flux mesher is used for automatic volume mesh generation.
- Simulation time for a full electrical cycle is reasonable.

High mesh density

Eccentricity Simulation Issues

- Periodicity can not be used about z axis for angular eccentricity.
 - Linked mesh generator application on symmetric faces can be done.
 - Problem occurs during assigning rotation about Z-axis.
- Symmetry about x-y plane can not be used as well for a double stator single rotor configuration.
- Unlike the usual case, static and rotating air regions need to separated for eccentricity simulation.

- > Left and right half about the center red line is symmetric.
- ▶ Linked mesh generator with a rotating transformation of 180° can be applied.
- Static (turquoise) and rotating air (red) regions are connected.

Take away: For eccentricity simulation full machine needs to be drawn and static and rotating air needs to be separated to accommodate angular eccentricity

Mesh Structure for Simulation

- Full machine geometry with high density mesh lengthens the simulation time.
- MeshGems mesher is used to reduce the simulation time.
- Half electrical cycle simulation takes about 3hrs on 16 core Intel Xeon 2.40 GHz CPU with 32.0 GB of RAM.
- The following mesh of the full machine is obtained using MeshGems mesher.

Mesh of AFM: Top View

Mesh of AFM: Side View

Simulation setup (cont.)

Simulation setup (cont.)

Combination of space and angular eccentricity

Simulation Results

- Static Eccentricities have been implemented in AFM from 0% to 50% in seven steps.
- Following parameters have been used for eccentricity implementation in AFM.

• Back EMF curve of Phase A of AFM shows distortion due to eccentricities.

Simulation Results (Cntd.)

- To understand the difference between the eccentricities, Fast Fourier Transform (FFT) of no-load BEMF has been done for all eccentricity conditions.
- FFT has been done for one cycle.

- Harmonic analysis of no-load BEMF shows that:
 - 1) Value of fundamental component is highest for healthy condition.
 - 2) Value of 3rd harmonics component is highest for combined eccentricity condition.

Simulation Results (Cntd.)

 Furthermore, the change of fundamental and 3rd harmonic components of no-load BEMF has been analyzed for all three types of eccentricities.

- From the curves, it can be seen that for fundamental component, rate of decrease is highest for combined eccentricity.
- For 3rd Harmonics, rate of increase is highest for angle eccentricity up to 20% eccentricity.
- After 20% eccentricity, rate of increase is highest for combined eccentricity.

Conclusion & Future Work

- Analysis of static eccentricity in AFM.
- Introduction of static combined eccentricity.
- No-load BEMF analysis in different eccentricity types.
- Fundamental and 3rd harmonic analysis for different eccentricity levels.
- It has been found that, combined eccentricity shows highest deviation in terms of noload BEMF analysis.
- Following parameters will be analyzed in future studies:
 - ✓ Cogging torque.
 - ✓ Airgap flux density.
 - \checkmark Axial force.

QUESTIONS ?

Email:

Shuvajit Das : <u>sd178@zips.uakron.edu</u> Md Tawhid Bin Tarek : <u>mt106@zips.uakron.edu</u> Yilmaz Sozer: <u>ys@uakron.edu</u>

