

Automation of Engineering Analysis and Design Process in the Subsea Industry

<u>A. Chakraborty</u>, K. Mostafa, L. Garzon , B. Ozturk, S. Sawant WG Kenny, Houston, USA R. Watkins, K. Mix Altair, Houston, USA 24th September, 2014

Integrity

Outline

- Drivers Behind Study & Subsea Applications
- Design Automation
 - Introduction
 - Design Framework
 - Challenges
 - RBDO
 - Design Automation
- Reliability Based Analysis
 - Buckle Arrestor Design
 - Problem Statement
 - FE Model
 - RBDO Model
 - Results & Conclusions
 - Work in Progress

Drivers Behind Study & Subsea Applications

Design Automation

Safety & Assurance

Relationships

Social Responsibility

People

Innovation

ation

Financial Responsibility

Integrity

Introduction

Design Process

Optimization

- Traditional (Non-mathematical, Iterative/Intuitive)
- Formulation Based (Mathematical)

5 - Wood Group Kenny

Altai

Introduction (Cont.)

Optimization

Mathematical Optimization

- Design Variables (\overline{X})
- Objective Function $(g(\overline{X}))$
- Constraints $(k_i(\bar{X}) \leq 0)$
- Bounds $(a_i \leq x_i \leq b_i)$

$$\begin{array}{l} \text{ minimize } g(\bar{X}) \\ \text{ optimization} \\ \begin{array}{l} \text{ subject to } k_i(\bar{X}) \leq 0 \\ \text{ and } a_i \leq x_i \leq b_i \end{array} \end{array}$$

Introduction (Cont.)

- Epistemic uncertainty at initial design stage is high broader design space
- DOE sampling and optimization algorithm needs many simulations
- Each simulation may involve multiple analyses (software etc.)
- Difficult for manual book-keeping
- Aleatoric uncertainty can add significantly to the computation cost (RBDO)

Design Framework

Challenges

Multiple simulations for DOE, Optimization

9 - Wood Group Kenny

∠ Altair

RBDO

Requires Design Process Automation

RBDO (Cont.)

Modeling Stochastic Problem

RBDO (Cont.)

Meta Modeling

Design Automation

Design Automation (Cont.)

Reliability Based Analysis

Safety & Assurance

Relationships

Social Responsibility

People

Inno

Innovation

Financial Responsibility

Integrity

Subsea Applications

- Input may change significantly between initial and final design stages
- Many parameters with complex effect on response
- Highly complex interactions (SSI, FSI, ECA)
- Aleatoric and epistemic randomness in input parameters
- Simulation is computationally expensive (non-linear, iterative)
- FOS Based design may be infeasible

- **DOE** captures complex interactions and effects
- Optimized design at initial stage Minimal change during final design
- Including reliable and robust design Increased safety during operation

Buckle Arrestor Design

 Locally Damaged Pipe (Due to Plastic Buckling under High Hydrostatic Pressure and Bending)

- Collapse Propagation Pressure << Collapse Pressure
- Buckle Arrestor is Designed to Prevent
 - Collapse Propagation of Locally Damaged Pipe

17 - Wood Group Kenny

Altair

Buckle Arrestor Design (Cont.)

- Challenge is the Lay-Tension Requirement
 - For Ultra Deepwater (>5000 ft), Length of Catenary Line is Very Long \implies Very High Tension
- Catenary Length can be Reduced by Decreasing Stinger Radius
 - Smaller Stinger Radius \Rightarrow More Vertical Stinger angle \Rightarrow Less Tension
- However, Smaller Stinger Radius will Create High Strain During Installation
- Challenge is to Reduce High Strain at Knee by BA Design Modification
- Equally Important is to Reduce Stress at BA/Pipe Weld

Design BA to Minimize Stress/Strain During Installation Using Least Amount of Material & Higher Allowable Weld Flaw

Problem Statement

Why BA & Why Reliability?

• High Strain at BA knee at installation (BA is designed for collapse

pressure < crossover pressure)

- Not all points on the curve is ok for knee strain and weld stress to be within functional limit– need design evaluation
- Used for installation check unless variability is very small (not a realistic scenario) design can be marginal
- Loads, materials can be variable (weld mismatch, etc.)

Problem Statement (Cont.)

Initial Design Dimensions

Problem Statement (Cont.)

Loads, Materials (Mean Values)

Pipe & BA Material Properties

- Yield Strength: 65.3 ksi
- Ultimate/Yield Ratio: 1.15
- Weld Material Properties
 - Yield Strength: 70.3 ksi
 - Ultimate/Yield Ratio: 1.15

Bi-linear Stress-Strain Curve is Used

Tension (kip)	Bending Moment (kip-ft)		
820	686		

Problem Statement (Cont.)

Optimization

Constraint (Probabilistic):

✤ P(Longitudinal Strain at BA Knee <= 0.005) = 0.95</p>

P(Longitudinal Stress at Weld <= 73 ksi) = 0.95</p>

Random Variables:

 RV = {Pipe, BA, and Weld Material Yield Strength & Ultimate/Yield Ratio, Tension, Bending Moment} Normally Distributed with Mean & COV

Mesh

Computational Cost

10 minutes/run

Von Mises Stress

Longitudinal Strain Plot

Longitudinal Stress at Weld

Longitudinal Stress Plot

SORA

RBDO Model

Design Variable – E

Design Variable – L

RBDO Model

Design Variable – R

Randomness in Response

DOE (Hammersley – 110 Runs)

Stress-Strain-Material

Stress-Strain-Load

Reliable Design (SORA) – Probabilistic Constraint

Computational Demand

Nominal Case

E (in)	R (in)	L (in)	T (in)	Volume (in ³)
8.6	1.4	10.0	3.4	2944.5

∠ Altair

Results & Conclusions

Deterministic Optimum

E (in)	R (in)	L (in)	T (in)	Volume (in³)
8.1	3.9	8.0	3.6	2796.8

Reliability Based Optimum

E (in)	R (in)	L (in)	T (in)	Volume (in³)
9.0	3.7	8.0	3.6	2844.1

Altai

Optimized Designs

Deterministic

E (in)	R (in)	L (in)	T (in)	Volume (in³)
8.1	3.9	8.0	3.6	2796.8

ے Alta

Conclusions

- General Design Framework has been developed for design optimization
- Both deterministic & RBDO analysis of BA performed
- Problem captures bounded but deterministic design variables, uncertainty in input parameter values, complex input-output relationship
- Implicit problem involving FEA converted to an analytical problem (feasible to do stochastic)
- RBDO: more material required but decreased probability of failure compared to deterministic design

Contact: arindam.chakraborty@woodgroupkenny.com

Relationships

Social Responsibility

People

Innovation

Financial Responsibility

Integrity