🛆 Altair | HyperWorks

MotionSolve for General Machinery

Understand and Optimize System Performance

MotionSolve, the next generation multibody solution from Altair, helps you understand and improve the performance of general machinery systems. With MotionSolve you can:

- · Easily build complex systems graphically
- Solve the underlying equations using appropriate physics and numerical methods
- · Understand system response by examining response plots and viewing animations
- · Improve system performance using well-known optimization techniques

Solution Highlights

Three modes for building models

- Build models graphically using the available library of modeling elements
- Provide design data to system templates to create models
- Import CAD geometry and mechanize it

Understand system behavior

- Review output plots
- Visualize motion as realistic animations

Analyze the behavior of your system

- Examine plots and animations to understand system performance
- Compute the forces acting during its operation
- Assess its vibration characteristics
- Execute scripts to perform complex simulations

Improve the design

- Understand the effect of design variation on system performance
- Conduct what-if studies to evaluate alternative designs and operating conditions
- Improve system performance using optimization

🛆 Altair 🛛 HyperWorks

Model

- Built-in parametric system templates: Beams, cams, gears, belts, pulleys, cables, winches and anchors
- Create your own system templates
- Linear or nonlinear flexible bodies
- Generalized joints with friction, backlash, compliance and limits
- 3-D/2-D contact between geometries including impact, sliding and friction
- Non-mechanical components: Modelica subsystems, 3rd party FMUs, hydraulics, pneumatics and controls

Analyze

- Kinematic, assembly, static, quasi-static, nonlinear dynamic and vibration analyses
- Co-simulation to solve multi-domain
 problems
- Component loads to FE solvers for strength, topology optimization and weight reduction; to fatigue codes for predicting component life
- Noise and vibration evaluation
- Software-in-the-loop simulations to evaluate controllers
- Model exchange using FMI/FMU 2.0

Evaluate

- Displacement, velocity, acceleration, force and user-defined results
- Automated report generation from simulation results
- Plot and animation templates

Improve

- Design studies
- Stochastic simulations
- Design of experiments
- Design optimization
- Batch processing of jobs on public or private clouds

🛆 Altair

1820 E. Big Beaver Rd., Troy, MI 48083-2031 USA Phone: +1.248.614.2400 • Fax: +1.248.614.2411 www.altair.com • info@altair.com

Choose the right physics for your model. Model belts using rigid bodies and contact or use nonlinear finite element beam elements.

Use component load histories computed by MBS to evaluate operating stresses and compute fatigue life.

a contractive subsystem	Mulatility 0	1.1.10.00.0.0		
Bet Formulation: NLFE	vanaber bp_0	Labet Bellhuley 0		
Enter the belt details in a clockwise direc	tion and specify the side of the	belt in contact with the pulley (Inner/Outer) Radius	let Side	
Pulley 1	0.0	0.0 100.0 Inner	•	
Pulity 2	400.0	0.0 150.0 Inver	. (
Total number of pulleys: 2 Reference marker for pulley coordinates: Marker Global Frame	NLFE Belt Componen Elements		Bei	KaterialProperty Belt Rubber (width: 200 (thickness: 4.0
	Number to be used	rquired 40 Minimum number required for g	eometry: 40	with
	Diameters I Use calculated	value		thickness
	0.000	and the local disk disk formation		
Show additional parameters	Beit tree dameter:	481.31 Installed beit diameter:	506.64	Report to Darlay
□ Show additional parameters	Belt tree diameter:	481.31 Installed beit diameter:	506.64	Flexet to Defau

Create your own parametric subsystems. Define a user interface. Instantiate subsystem by only specifying its design parameters.

For more information about HyperWorks products, visit www.altairhyperworks.com

Listed below are HyperWorks® applications. Copyright© 2016 Altair Engineering Inc. All Rights Reserved for: HyperMesh®, HyperCrash®, OptiStruct®, RADIOSS®, HyperView®, HyperView Player®, HyperStudy®, HyperGraph®, MotionView®, MotionSolve®, HyperForm®, HyperXtrude®, Process Manager", Templex", Data Manager", MediaView", BatchMesher", TextView", HyperMath®, Manufacturing Solutions", HyperWeld®, HyperMold®, solidThinking®, solidThinking Evolve", solidThinking Inspire®, Durability Director", Suspension Director", AcuSolve®, AcuConsole®, HyperWorks On-Demand", HyperWorks Enterprise", PBS Works", PBS Professional®, GridWorks", PBS GridWorks®, PBS", Portable Batch System®, PBS Analytics", PBS Desktop", e-BioChem", e-Compute" and e-Render". All other marks are the property of their respective owners.