

Evolution of Simplified Loadpath Models for Advanced Body Structure Development

James Truskin Body S&CE | BIW FCA US LLC

Altair Technology Conference | Detroit, MI USA

October 10, 2019

©2019 FCA US LLC

Key Topics

Concept Phase Objectives & Challenges

Body System Design Process

Loadpath, Section & Joint design tools

Simplified Loadpath Models (SLM)

"New" Concept-Phase Structure Design Tools

Body Structure Challenges – Concept Phase

- 1. What do we need to know about the body structure in the concept phase?
 - Targets (weight, performance)
 - Structural requirements
 - Constraints: Packaging & section sizes, assembly sequence, joining processes, material availability
- 2. How do we develop the body structure to assess against these targets?
 - Create a conceptual model that is fast to build and iterate loadpath sections and their properties

BIW Structure – Development Principals

Loadpaths

- Evolutionary or revolutionary needs as vehicles evolve
- Loadpaths manage and transfer energy input through the body system
- Critical in determining the performance and weight

BIW Structure – Loadpath Concept Development

Loadpath Generation Process

- Develop vehicle lay out: hard points, critical monuments
- Identify and quantify energy input points to body (load points)
- Develop efficient reaction structure
- Optimize body joints and structural section sizing

- Concept Validation Model
 - Mass/Performance
 - Vehicle package integration
 - Process and assembly validation

BIW Structure – Development Principles

Loadpaths

- Evolutionary or revolutionary needs as vehicles evolve
- Loadpaths manage and transfer energy input through the body system
- Critical in determining the performance and weight

Sections, Materials and Joints/Build Process

- Realization of loadpaths
- Sections transfer loads
- Joints connect sections
- Materials selection to balance section and joint stiffness and strength

BIW Structure – Development Principals

Loadpaths

- Evolutionary or revolutionary needs as vehicles evolve
- Loadpaths manage and transfer energy input through the body system
- Critical in determining the performance and weight

Sections, Materials and Joints/Build Process

- Realization of loadpaths
- Sections transfer loads
- Joints connect sections
- Materials selection to balance section and joint stiffness and strength

Virtual Concept Validation

- Loadpath, Section and Joint validation
- Vehicle package integration and tradeoffs
- Process and assembly validation

Body Structure Challenges – Concept Phase

- 1. What do we need to know about the body structure in the concept phase?
 - Targets (weight, performance)
 - Structural requirements
 - Constraints: Packaging & section sizes, assembly sequence, joining processes, material availability
- 2. How do we develop the body structure to assess against these targets?
 - Create a conceptual model that is fast to build and iterate loadpath sections and their properties

- Some body panels are not easily presented or substituted with BEAM elements
 - Roof, Dash, Floorpan, Body Side Panel
- The mass and stiffness contribution of these panels must be captured in the model

C¹²³ – Simulation Driven Concept Design Support

Source: Altair Engineering, Inc.; used with permission

C¹²³ – Simulation Driven Concept Design Support

Source: Altair Engineering, Inc.; used with permission

C¹²³ – Simulation Driven Concept Design Support

Source: Altair Engineering, Inc.; used with permission

FIAT CHRYSLER

Perceived Benefits:

- + Improved results from section assessment vs 2-D calculations (Ixx, Iyy, J...)
- + Faster feedback loop than traditional CAD-CAE techniques
- + Altair has built many macros to automate and accelerate the conversion process
- + Ability to quickly run trade-off studies optimize section and joint properties to meet program targets
- + Ability to apply on Upperbody only or full body structure

Perceived Challenges:

- Expertise in creating Simplified Loadpath Models
- Correlation of SLMs / C2 models

Advanced learning of structural sensitivities through increased simulation and optimization in the concept phase

SLM Development

- Create Beams
- Identify body panels

Section Creation Create sections library and design variables

Example Cross Section Response Surface

SLM Build Process Diagram

BIW Model Size Comparison

Simplified Model Details

Concept Body Structure Development Process

Identified section parameters and joint designs must be validated in a concept model

- Mass/Performance validation & optimization
- Vehicle package integration & validation
- Process and assembly validation

Tuning the joint stiffness makes it possible to achieve correlation to the analyst's prescribed stiffness metrics

- Model accuracy increases as more loadcases are used as correlation objectives/constraints
- However, as more loadcases are added, error constraints (violations) may need adjustment

Error to Shell Model	Initial SLM (Rigid Joints)	Final SLM (Tuned Joints)
Natural Frequencies:		
Torsion	+52%	1%
Front Lateral Bending	+46%	0%
Global Vertical Bending	+37%	-2%
Static Stiffness:		
Static Torsion Stiffness	+93%	0%
Static Bending Stiffness	+125%	+4%

+1%

Baseline Model

Final SLM

Vertical Bending Mode Comparison

-2%

Baseline Model

Final SLM

Lateral Bending Mode Comparison

0%

Baseline Model

Final SLM

Study Objective:

- 1. Identify the effect on global stiffness with common sections
- 2. Identify the mass reduction opportunity through gauge and section optimization

+0.7 Hz

Baseline SLM

Modified Rear Header Location

Baseline SLM

Modified Rear Header Location

Upperbody Development Example

Front Vertical Bending Mode

Rear Vertical Bending Mode

- 1. Modern, advanced automotive body engineering requires state-of-the art tools and processes to yield time and mass efficiencies
 - Different tools are required for each phase of product development
- 2. Modern lightweighting requirements challenge BIW engineers to find every efficiency in the design
 - Increasing high strength steel utilization, leading to thinner gauges, motivate upfront tools to solve NVH issues before they arise in the development process

3. FCA US LLC has a broad toolbox of design tools to optimize the BIW system

- First order tools evolve and mature into concept validation models
- Accurate simplified loadpath models lead to a better optimized body structure

Standardize loadcases and accuracy requirements for SLMs

- Identify most suitable loadcases for local and global body stiffness correlation
- More advanced correlation metric for modeshapes (e.g. MAC)

Explore sensitivity of responses to changes in joint stiffness

- DOE with joint directional stiffnesses as inputs
- Body stiffness metrics as outputs
- Rank importance of joints and directional stiffnesses for each loadcase

With thanks for the support from Altair to develop the SLM process

Nicolas Zagorski Altair Engineering

Eric Nelson

Altair Engineering ean@altair.com