FEMFAT Use Cases

Fatigue Analysis Software by MAGNA / Engineering Center Steyr GmbH & Co KG

Multipurpose Cross Member Innovation project ECS & Teufelberger Composite GmbH

Challenge

- Defining dimensions of layers and fiber orientations.
- Comparison of different designs regarding fatigue.

Solution

- Fatigue Assessment of combined structure (steel + Continous Fiber Reinforced Plastic (cFRP) with FEMFAT
 - Considering mean stress influence, enhanced Puck criteria ...
 - Considering load history data (multi axial loading).
 - Correlation with tests in fatigue laboratory.

Benefits

- Observation of critical fatigue locations and service life in an early stage of a project.
- Efficient structure optimization based on simulation results.
- Reduced necessary test program -> product development cost and time savings.

Fatigue analysis for a Gearbox for ZF Friedrichshafen

Challenge

- 15 load cases were used in the model
- Detect local critical areas for the Gearbox and suggest improvements for design

Solution

- Fatigue analysis in FEMFAT transMAX from
- Several local modifications (3 loops)
 - A sub-model was used to update the local modifications.

Benefits

- Lead time reduction by submodelling-> time was reduced down to 5.5% compared to the first analysis.
- Cost savings for at least 2 prototypes.

*With courtesy of ZF Friedrichshafen

Optimization of a Gearbox Cover Mercedes AMG

Challenge

 An improved design for the cover has to be found by means of the topology optimization.

Solution

- Topology optimization process
 - FEMFAT results are essential to the process.

Benefits

- Critical fatigue locations specify, in detail, the areas where the optimization can be made:
 - Low safety factors request for more material;
 - High safety factors indicate the areas of unnecessary weight.

