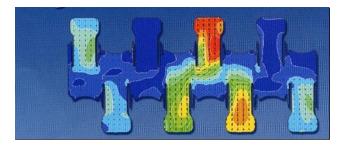
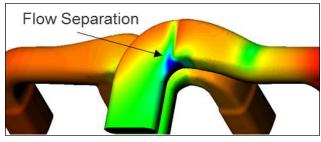
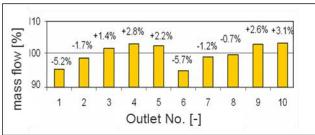
AVL FIRE™ Top Use Cases

Software by AVL List GmbH

Flows in Pipe & Junction Systems


Challenge

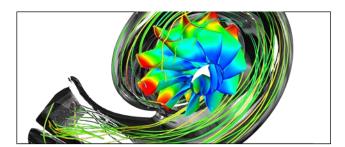

 Analysis and optimization of fluid flow path in terms of pressure drop (e.g. pipes, intake systems, ports, valves) and uniformity (e.g. exhaust systems, turbo chargers)

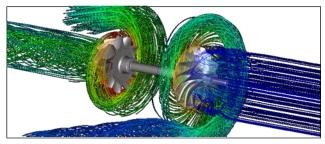

Solution

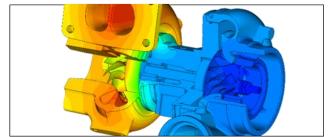
 Simulation using AVL FIRE[™] M helps to derive design recommendations to reduce parasitic losses and to obtain optimum component & system performance

- Saving cost and time
- Ensuring best component performance

Turbo-Charger Analysis


Challenge

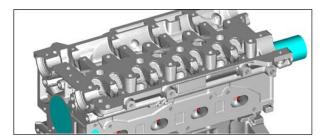

- Turbo-charger housings have to withstand extreme thermal load due to high exhaust gas temperature
- Design has to meet performance and life time requirements

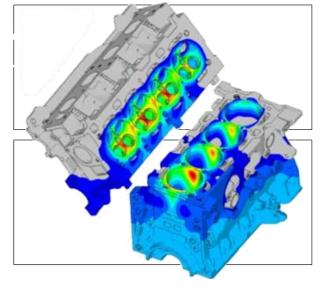

Solution

 Simulation of flow and conjugate heat transfer between fluid and solid domain using AVL FIRE™ M to determine structural temperatures

- Cost and time efficient T/C development
- Maximum component performance
- Reduced failure probability, increased life time

Thermal Load of Head / Block Compound


Challenge

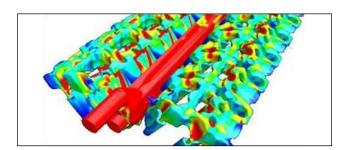

 Light weight design, down sizing and increased power density of IC Engines lead to increased thermal load of the engine structure

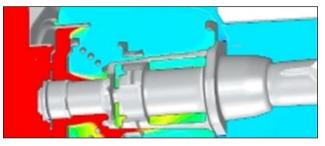
Solution

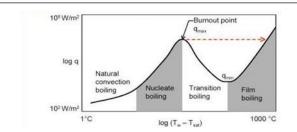
 Simultaneous simulation of coolant flow, heat transfer and temperature of the structure parts to analyze and optimize the design in regard to thermal load using AVL FIRE™ M

- Reduced failure probability
- Increased life time
- Lowering warranty issues
- Customer satisfaction

Coolant Flow Analysis


Challenge


 Increased thermal load of modern IC Engines requires precision cooling and low energy demand for coolant pumps


Solution

Simulation of the flow in cooling circuits and its individual components accounting for pressure drop, heat convection, heat conduction and the effect of nucleate boiling using AVL FIRE™ M

- Precise prediction of cooling conditions and component thermal load
- Maximizing component & system performance
- Minimizing energy consumption of the coolant pump

