
© Altair Engineering, Inc. All Rights Reserved. / altair.com / Nasdaq: ALTR / Contact Us 06.2021 / 01

T
E

C
H

N
IC

A
L

D
O

C
U

M
E

N
T

ALTAIR® GRID ENGINE® SUPPORT
FOR NVIDIA® DGX™ SYSTEMS
Developed to meet the needs of demanding high-performance computing (HPC), artificial intelligence (AI),
and analytics workloads, NVIDIA® DGX™ systems are built on the revolutionary NVIDIA A100 and V100 Tensor
Core GPU platforms. By using Altair® Grid Engine® to manage GPU workloads on DGX systems, organizations
can boost performance, use resources more efficiently and improve overall productivity.

1. About NVIDIA DGX Systems
NVIDIA DGX systems are a family of products from NVIDIA purpose-built for deep learning
applications. The NVIDIA DGX family includes the NVIDIA DGX Station™, NVIDIA DGX-1™
and DGX-2™ rackmount servers, and the newer NVIDIA DGX™ A100 system.

In AI data centers, managing distributed GPU-powered machine learning frameworks is a central
challenge. Data scientists run diverse workloads ranging from data preparation to model training
to model validation to inference. Workloads need to run quickly, use resources efficiently, and be
deployed considering factors such as CPU and GPU architecture, memory, cache, bus topologies,
and NVIDIA interconnect and network switch topologies.

The latest generation of NVIDIA DGX A100 systems integrate 8 NVIDIA A100 Tensor Core GPUs
with an NVIDIA NVLink™ powered NVSwitch™ fabric. When configured with 80GB A100 GPUs,
these systems deliver over 3X the performance of an NVIDIA DGX-2 system based on the standard
deep learning recommendation model (DLRM) for PyTorch benchmark. NVIDIA DGX A100 systems
are 6U servers that can be deployed individually or as part of the NVIDIA DGX POD or DGX
SuperPOD reference architecture. Each DGX SuperPod cluster has 140 x DGX A100 systems for
a total of 1,120 GPUs. DGX multi-system configurations employ NVIDIA InfiniBand switched fabric
with 8 x 200 Gb/s connections per DGX A100 server.

2. Support for NVIDIA DGX Systems in Altair Grid Engine
Altair Grid Engine is an enterprise-class workload scheduling and management solution used across
many industries for applications that include machine learning, deep learning, and HPC. Altair Grid
Engine provides rich support for scheduling GPU-aware applications and containers. It also features
a direct integration with NVIDIA Data Center GPU Manager (DCGM), making it an ideal workload
manager for NVIDIA DGX environments. Regardless of whether you are using a single DGX system
or are deploying a cluster comprised of thousands of GPUs, Altair Grid Engine provides rich
workload and resource management capabilities for your NVIDIA DGX environment.

NVIDIA A100 GPUs deliver
unprecedented acceleration

Purpose-built to meet the
needs of demanding HPC,
AI, and analytics workloads

https://hubs.ly/H0QPrmQ0
https://hubs.ly/H0QPrmR0

© Altair Engineering, Inc. All Rights Reserved. / altair.com / Nasdaq: ALTR / Contact Us 06.2021 / 02

3. Introduction to Altair Grid Engine
Altair Grid Engine is a leading solution for workload and distributed resource management.
It runs across clusters, clouds, and supercomputers, improving workload throughput,
system efficiency, and overall productivity. With advanced support for containers and GPUs,
Altair Grid Engine is well suited to GPU-aware applications running on NVIDIA DGX systems.

Architecture and Components – Altair Grid Engine supports a client-side command-line interface
(CLI) and a set of system daemons/services that run across nodes in an Altair Grid Engine
cluster. Altair Grid Engine runs on Linux®, Microsoft Windows®, and a variety of UNIX® operating
environments. A brief description of Altair Grid Engine’s various components is provided below
to help readers understand how the pieces fit together.

Command-line Interface – Altair Grid Engine provides a comprehensive set of programs that
can be run from the command line to support various user, administrative, and operational tasks.
Altair Grid Engine complies with the POSIX 1003.2d standard, so basic user commands and syntax
will be familiar to Altair® PBS Professional® users. The Altair Grid Engine architecture is significantly
different from PBS Professional, and the administrative commands are also different.

Master Host – In an Altair Grid Engine cluster, the qmaster is the central control and information
point. The qmaster process is called sge_qmaster for historical purposes. The qmaster keeps track
of all status information in the cluster including load indices across all execution hosts, running and
queued jobs, users and their roles, and various policies and configuration details. The qmaster is also
responsible for scheduling, matching resources with job requirements, planning resource assignment
schedules, and handling resource reservations. The qmaster is multi-threaded to maximize
responsiveness and scheduling performance. To ensure that the qmaster can be recovered at any
time, or fail over to another host, all activity is logged to a shared filesystem or to a Berkeley DB
database depending on the cluster administrator’s preference.

Shadow Master Hosts – The qmaster is a potential central point of failure, so Altair Grid Engine
environments are often deployed with one or more shadow master hosts to ensure continuous
operation if the master host fails. Shadow master hosts are optional. Customers may choose to
run one or multiple shadow hosts depending on their desired level of redundancy. A lightweight
sge_shadowd process runs on the execution host responsible for monitoring sge_qmaster on the
master host and starting an instance of sge_qmaster on a shadow host if the master host fails.
If multiple shadow daemons are active in the cluster, they negotiate with one another to ensure
that only a single instance of the sge_qmaster is started.

Execution Host – In an Altair Grid Engine environment, execution hosts are where various workloads
are executed. A daemon called sge_execd runs on each execution host. It tracks and reports host
resource utilization (CPU load, memory usage, etc.) and the state of jobs on each node.

Workload Types – When a job is launched, sge_execd spawns an sge_shepherd process for each job
responsible for starting, monitoring, and managing various jobs. Altair Grid Engine supports a variety
of different workload types. Among the workloads supported are:

• Batch jobs
• Parallel jobs
• Interactive jobs
• Array jobs
• Checkpoint jobs
• Immediate jobs
• Containerized jobs
• GPU jobs

4. Obtaining Altair Grid Engine
Visit the Altair website to obtain a copy of Altair Grid Engine or request a free software trial.
Please note that there are open-source versions of Grid Engine available. However, open-source
Grid Engine does not include the GPU-aware scheduling features required by NVIDIA DGX systems.

Solve bigger, more complex data
science problems faster

https://hubs.ly/H0QPrmQ0
https://hubs.ly/H0QPrmR0
https://hubs.ly/H0QPrmR0
https://hubs.ly/H0QPrry0

© Altair Engineering, Inc. All Rights Reserved. / altair.com / Nasdaq: ALTR / Contact Us 06.2021 / 03

5. Before You Start
Altair Grid Engine is typically installed on a cluster comprised of one or more NVIDIA DGX systems
connected by a TCP/IP network. It should be installed by a Linux system administrator familiar
with the NVIDIA DGX server environment. You will need to perform some prerequisite steps before
installing Altair Grid Engine. These include selecting a master host, ensuring that the TCP/IP network
is properly configured, and setting up a shared NFS file system accessible by all NVIDIA DGX hosts.
Consult the Altair Grid Engine Installation Guide for details.

Altair Grid Engine will work the Ubuntu® LTS operating system pre-installed on NVIDIA DGX systems.
It is also supported on most other Linux operating systems including Red Hat® Enterprise Linux®,
SUSE® Linux® Enterprise Server, CentOS®, and Oracle® Linux®. Details of supported operating systems
can be found in the Altair Grid Engine Release Notes. These instructions assume that you are running
Altair Grid Engine 8.6.5 or later. The steps described in sections 6 to 8 of this guide are essential for
configuring GPU and DCGM support in Altair Grid Engine on DGX systems. Setting up Docker as
described in section 9 and CPU-GPU affinity as described in section 11 are optional.

6. Enabling Cgroups
Cgroups (control groups) is a feature available in modern Linux distributions that limits the resources
that a process or set of processes can access. Altair Grid Engine supports multiple features related
to cgroups. The qconf command is used by Altair Grid Engine administrators to display or modify
the configuration of the cluster. Configuration changes can either be made globally such that they
apply to all cluster hosts, or individually. Individual host settings will override the global settings.

On NVIDIA DGX systems cgroups needs to be enabled by setting the cgroup_path and the devices
parameters so that Altair Grid Engine will manage access to all GPUs on the host. This will block all
devices from /dev/nvidia0 to /dev/nvidia254 and make them unavailable to users and processes
running outside of Altair Grid Engine.

To run qconf you will need to be logged in as the Altair Grid Engine administrator account specified
when you installed it. You can run qconf from any cluster host. When you run qconf, you will be
placed in the vi editor (or the editor pointed to by $EDITOR). You will need to add or modify the
cgroup_params line as shown below. After making changes, you will need to save any changes in
vi to return to the Linux shell.

$ qconf -mconf <hostname>
 cgroup_params cgroup_path=/sys/fs/cgroup \

 devices=/dev/nvidia[0-254]

A host will not have 255 GPUs. The syntax above in cgroup_params ensures that Altair Grid Engine
will manage all the GPUs.

7. Enabling DGCM Support
Altair Grid Engine version 8.6.0 and later are integrated with NVIDIA’s Data Center GPU Manager
(DCGM). DCGM provides detailed information about GPU resources. With this integration, Altair
Grid Engine has full visibility into GPUs on each host including GPU type and version; available
memory; operating temperature; and socket, core, and thread affinity. This information helps Altair
Grid Engine schedule GPU-aware applications more efficiently to optimize both performance and
resource use. As explained earlier, Altair Grid Engine runs a daemon on each cluster host called
execd. DCGM support is enabled by setting the execd parameter UGE_DCGM_PORT to the port
DCGM uses to communicate on each host, 5555 by default. You can run the qconf command as the
Altair Grid Engine admin to set the UGE_DCGM_PORT for each cluster host where DCGM is installed.

$ qconf -mconf <hostname>
 ..

 execd_params UGE_DCGM_PORT=5555

The NVIDIA DGX A100 system
includes 8 GPUs, 6 NVIDIA
NVSwitches, 10 Mellanox network
interfaces, dual 64-core AMD
CPUs, 2TB system memory, and
30TB Gen4 NVMe SSD

https://hubs.ly/H0QPrmQ0
https://hubs.ly/H0QPrmR0

© Altair Engineering, Inc. All Rights Reserved. / altair.com / Nasdaq: ALTR / Contact Us 06.2021 / 04

If all hosts in your cluster have GPUs and DCGM installed, you can run the command below once
to apply this setting globally to all cluster hosts.

$ qconf -mconf global
 ..

 execd_params UGE_DCGM_PORT=5555

8. Setting up GPU Resources
Altair Grid Engine uses a resource map construct called an RSMAP complex to manage access
to consumable resources on a host — those with a finite supply, such as memory, free space
on a file system, floating software licenses, or GPUs. Before RSMAPs can be used, a consumable
GPU resource of type RSMAP must be added in Altair Grid Engine as shown. As before, the qconf
command should be run as the cluster administrator and vi used to enter or edit parameter settings.
Details about what these settings mean are provided in the sge_complex man page.

$ qconf -ace gpu

 name gpu
 shortcut gpu
 type RSMAP
 relop <=
 requestable YES
 consumable YES
 default 0
 urgency 0
 aapre NO

 affinity 0.000000

Each id of the RSMAP complex can be configured to represent a GPU device on a cluster host
as shown below. The device parameter is needed to facilitate blocking using cgroups. The cuda_id
provides mapping between the device as it appears in DCGM and the physical device visible to
Altair Grid Engine. The same cuda_id is also used by nvidia_smi.

The qconf -me command is used to modify the configuration of each execution host. For an NVIDIA
DGX-2 system with 16 GPUs, a configuration will look like this:

$ qconf -me dgx2-1

 hostname dgx2-1
 ..
 complex_values \
 gpu=16(gpu0[device=/dev/nvidia0,cuda_id=0] \
 gpu1[device=/dev/nvidia1,cuda_id=1] \
 gpu2[device=/dev/nvidia2,cuda_id=2] \
 gpu3[device=/dev/nvidia3,cuda_id=3] \
 gpu4[device=/dev/nvidia4,cuda_id=4] \
 gpu5[device=/dev/nvidia5,cuda_id=5] \
 ...

 gpu15[device=/dev/nvidia15,cuda_id=15])

Each GPU can optionally be represented by more than one complex/id. This is discussed in section
13 dealing with GPU sharing/oversubscription.

9. Installing and Configuring Docker
To submit Docker jobs requiring access to GPUs, the NVIDIA Container Toolkit (a.k.a. nvidia-
docker2) must be installed on each cluster host. Docker and NVIDIA runtime are installed
on NVIDIA DGX systems by default, but if you use a different operating system, you will need
to install these components yourself. You will need a Docker image with NVIDIA GPU support
containing your application. You can use the NVIDIA-supplied CUDA images or other images
derived from these base images. There are a variety of CUDA images available in the NGC Catalog.

NVIDIA DGX A100 systems can be
deployed individually or as part
of the NVIDIA DGX SuperPOD
Solution for Enterprise

https://hubs.ly/H0QPrmQ0
https://hubs.ly/H0QPrmR0
https://hubs.ly/H0QPrs60

© Altair Engineering, Inc. All Rights Reserved. / altair.com / Nasdaq: ALTR / Contact Us 06.2021 / 05

Altair Grid Engine has built-in support for Docker and the NVIDIA Container Toolkit, allowing
you to manage containerized GPU workloads just as you would manage any Grid Engine job.
When submitting a containerized GPU job to Altair Grid Engine, you should specify the --gpus
flag. This will result in the NVIDIA runtime being selected. Running a containerized TensorFlow
training model using Altair Grid Engine to select a specific GPU will look something like this:

$ qsub -l docker,\
 docker_images="*tensorflow:18.03-py2*",\
 gpu=1(V100)[affinity=true]\
 --gpus all -b y\

 -S /bin/sh <command-inside-container>

The -l switch specifies resource requirements. In this example we require a host with the Docker
runtime installed and we express a preference that a particular docker image be available (Altair
Grid Engine will download the container automatically if it is not available on the host). We also
require a host with a single available V100 GPU.

10. Submitting Jobs
In this section, we provide some simple examples of running different kinds of jobs under Altair Grid
Engine on an NVIDIA DGX cluster. The qsub command in Altair Grid Engine is used to submit jobs
to the cluster. Details are available in the Altair Grid Engine User’s Guide.

Submitting Regular Jobs – Non-GPU jobs run on the NVIDIA DGX cluster just as they would on any
other Altair Grid Engine cluster. Jobs that attempt to access a GPU at runtime without specifically
requesting a GPU will be blocked by cgroups. In this example, we submit an array of five non-GPU
tasks numbered 2,4,6,8,10 to a priority queue:
$ qsub -t 2-10:2 -l q=priority array.sh

Submitting Jobs Requiring GPUs – Jobs can request access to a GPU using the -l switch on the qsub
command line. Resource requests can include the resource name, the amount of resource, the name
or ID of the resource, and directives related to affinity.

The general syntax is:
-l <cplx_name>="<amount>(<id>)[<affinity>]"

To submit a job that requires access to one GPU:
$ qsub -l gpu=1 job.sh

To request access to a specific type of GPU:
$ qsub -l gpu="1(P100)" job.sh

A GPU named “P100” must be configured in complex_values in the RSMAP for this example
to work. When a user submits a job requesting a GPU as above, Altair Grid Engine responds with
a job_id. The user can then use the qstat command with the returned job_id as shown to get status
information about the job including information about the assigned GPU.

$ qstat -j <job_id>
 exec_host_list 1:dgx03:1
 granted_req. 1:gpu=1
 granted devices 1:dgx03: /dev/nvidia0

 resource map 1:gpu=dgx03=(V100)

Submitting Docker Jobs Requiring GPUs – Docker jobs requiring GPU resources must request
a Docker host with the required docker image and specify the number of GPUs required for the
containerized workload. In the example below we require two GPUs and a host where the Docker
resource is set to true (meaning Docker is installed), and we would prefer a host that already has
the required cuda:9 docker image loaded to avoid needing to pull the image again from a repository.
Altair Grid Engine has visibility to a list of all docker images available on each host, so a wildcard is
used to match a specific image against the list.

Managing distributed GPU-
powered machine learning
frameworks is a central challenge
in AI data centers

https://hubs.ly/H0QPrmQ0
https://hubs.ly/H0QPrmR0

© Altair Engineering, Inc. All Rights Reserved. / altair.com / Nasdaq: ALTR / Contact Us 06.2021 / 06

$ qsub -l gpu=2,docker=1,docker_images="*cuda:9*"\
 --gpus all -xd "-env NVIDIA_VISIBLE_DEVICES=${gpu(0)},${gpu(1)}"\

 job.sh

The --env NVIDIA_VISIBLE_DEVICES argument is specified on the Altair Grid Engine qsub command
line to pass the environment variable NVIDIA_VISIBLE_DEVICES into the container. The placeholder
values ${gpu(0)} and ${gpu(1)} are replaced by the actual GPU devices scheduled by Altair Grid
Engine. The default for NVIDIA_VISIBLE_DEVICES is “all” so passing only the GPUs selected by Grid
Engine ensures that there are no conflicts and workloads cannot interfere with one another.

11. Requesting CPU-GPU Affinity
With GPU-aware applications, part of the workload runs on one or more CPU cores and part of it
runs on a GPU. It is important that processor cores be close to a selected GPU and share a common
switch or PCIe bus to maximize performance. When CPU cores are close to a GPU, they’re described
as having affinity, an important consideration for Altair Grid Engine scheduling decisions. Requesting
CPU-GPU affinity is only possible when support for DCGM is enabled as outlined in section 7.

Part of the information that DCGM provides to Altair Grid Engine for each GPU is information about
processor affinity. The affinity value in the example below shows the CPU sockets, cores, and threads
on the host that have affinity to each GPU by displaying them in upper case. This example shows a
dual-CPU host where each processor (socket) has 8 cores each with 2 threads. If a GPU workload
is placed on the first GPU (cuda0), the best performance will be obtained by scheduling the CPU
component of the job on the first 4 cores on the first socket.

host.cuda.0.affinity=SCTTCTTCTTCTTcttcttcttcttScttcttcttcttcttcttcttctt,
host.cuda.0.gpu_temp=36,
host.cuda.0.mem_free=16280.000000M,
host.cuda.0.mem_total=16280.000000M,
host.cuda.0.mem_used=0.000000M,
host.cuda.0.name=Tesla V100-PCIE-16GB,
host.cuda.0.power_usage=28.527000,
host.cuda.0.verstr=390.46,
host.cuda.1.affinity=ScttcttcttcttcttcttcttcttSCTTCTTCTTCTTcttcttcttctt,
host.cuda.1.gpu_temp=40

..

This is complicated behind the scenes, but DCGM and Altair Grid Engine hide this complexity from
users. Jobs requiring GPUs can request that they are scheduled on a CPU-GPU combination with
good affinity by using the optional affinity parameter as shown:

$ qsub -l gpu=1[affinity=true] gpu_job.sh

In Altair Grid Engine versions prior to 8.6.5, the affinity parameter can be 0/false (the default) or
1/true. In Altair Grid Engine 8.6.5 and later, affinity can also be set to “2” meaning that affinity is
“nice to have” but not essential. If a job is submitted with affinity=2, Altair Grid Engine will attempt
to schedule CPU cores and GPU devices with good affinity but will schedule the job anyway if the
affinity requirement cannot be satisfied.

12. NVIDIA DGX A100 Systems and MIG
Customers using NVIDIA DGX A100 systems will be familiar with Multi-Instance GPU (MIG), a major
feature of NVIDIA A100 GPUs that allow them to be securely partitioned into up to seven separate
GPU instances for CUDA applications. MIG is beneficial for workloads that do not fully saturate
a GPU’s compute capacity. Rather than running a small GPU application and underutilizing the GPU,
MIG allows multiple applications to share the same GPU while providing isolation to ensure that one
client application cannot impact other clients. Details about MIG are provided in the NVIDIA Multi-
Instance GPU User Guide.

Altair Grid Engine efficiently
manages the most demanding
GPU workloads on NVIDIA DGX
systems

https://hubs.ly/H0QPrmQ0
https://hubs.ly/H0QPrmR0
https://hubs.ly/H0QPrmS0
https://hubs.ly/H0QPrmS0

#ONLYFORWARD

Recent versions of Docker now support a flag “--gpus” that allows users running containerized
workloads to select GPUs and MIGs with the same colon syntax described above. This functionality
is supported in Docker API versions 1.40 and later. This is explained in the Docker Documentation
describing Runtime options with Memory, CPUs, and GPUs. Altair Grid Engine 8.6.16 and later
versions have partial support for MIG. Altair is continuing to enhance Altair Grid Engine to simplify
the use of MIG. In Altair Grid Engine version 8.6.16 and later, the following syntax can be used to
submit a job that starts a container with access to MIG 0 on GPU 0. This represents an initial step
in fully supporting MIG.

$ qsub -l docker=1,docker_images="*nvidia*" -xd "--gpus device=0:0" ...

Customers can make use of RSMAPs and the new --gpu flag to take advantage of MIG in
Altair Grid Engine environments even while formal support for MIGs is evolving. Customers
wishing to take advantage of MIG can contact Altair to obtain assistance.

13. GPU Sharing
In addition to NVIDIA A100 MIG functionality described above, GPUs can be “oversubscribed” even
on DGX-1 and DGX-2 servers without support for MIG (i.e., one physical GPU can be mapped to two
or more RSMAP ids/complexes). This way more than one job can run on a GPU. For example, a host
has two NVIDIA V100s and two NVIDIA P100s installed. The V100 has twice the performance of the
P100, so a cluster administrator may wish to indicate that each V100 can support up to two jobs at
the same time. To achieve this, we can describe a resource complex for our four physical devices
with six virtual entries, where each V100 GPU appears twice, each able to support up to two jobs.

qconf -me <host>
...
complex_values gpu=6\
 (V100_0[device=/dev/nvidia0,cuda_id=0]\
 V100_0[device=/dev/nvidia0,cuda_id=0]\
 V100_1[device=/dev/nvidia1,cuda_id=1]\
 V100_1[device=/dev/nvidia1,cuda_id=1]\
 P100[device=/dev/nvidia2,cuda_id=2]\

 P100[device=/dev/nvidia3,cuda_id=3])

If we want to use half of a V100 GPU for a job, and we do not care which physical GPU is assigned,
we can request a single V100 GPU as shown:

$ qsub -l gpu=1(V100_*) job.sh

If a job needs exclusive access to a physical V100 GPU, it needs to request both “slots” on the shared
GPU. In this case, use the wildcard selector V100_* to obtain the correct GPU model, and use the
XOR operator to make sure that the GPU slots allocated are on the same physical GPU. For example,
to request two slots on a V100 and make sure that both slots are on the same physical device (2 x
V100_0 slots or 2 x V100_1 slots) use the following syntax:

$ qsub -l gpu=2(V100_*^) job.sh

14. Learning More
For additional information about using Altair Grid Engine with NVIDIA DGX systems, please consult
the Altair Grid Engine documentation. You will require the following documents:

• Altair Grid Engine Installation Guide
• Altair Grid Engine Administrator’s Guide
• Altair Grid Engine User’s Guide

For more information or technical support, please visiit altair.com/contact-us.

NVIDIA DGX systems were
designed to meet the demanding
needs of HPC, AI, and analytics
workloads

https://www.linkedin.com/company/altair-engineering/
https://www.linkedin.com/company/altair-engineering/
https://www.instagram.com/altairengineering/
https://www.instagram.com/altairengineering/
https://twitter.com/Altair_Inc
https://twitter.com/Altair_Inc
https://www.facebook.com/altairengineering/
https://hubs.ly/H0QPrmR0
https://hubs.ly/H0QPt4F0

