HyperStudy

HS-1590: DOE Study Using Madymo

In this tutorial, you will learn how setup a DOE study using Madymo as a solver. Madymo simulation is a crash occupant safety application. The design variables you will be using in this tutorial are the scale of force-penetration curve, the scale of recliner loading function and the position of the head rest. The objective of this tutorial is to study the effect of changing the dummy-seat contact stiffness, seat recliner loading function and the distance between the dummy head and the head rest on the dummy's neck injury criteria.

The files used in this tutorial can be found in <install_directory>/tutorials/hst/hs-1590/. To run this tutorial, copy the following files to your working/study directory: A_hffoam_TEST.xml (Input file for Madymo), d_hyb350el_inc.xml, and madymo_DOE.bat (Batch file for Madymo V7.5).

Step 1: Create the Base Import Template in HyperStudy

- 1. Click **Tools** > **Editor** from the menu bar. The **Parameter Editor** opens.
- 2. In the File field, navigate to your working directory and open the a_hffoam_TEST.xml file.
- 3. In the Search area, enter GROUP_DEFINE.
- 4. Click ▶. HyperStudy highlights GROUP_DEFINE.
- 5. Under the variable Load_Function_scale_factor, highlight the value 1.0.

- 6. To create a parameter, right-click on the highlighted fields and select **Create Parameter** from the context sensitive menu.
- 7. In the Parameter varname_1 dialog, enter Load_Function_scale_factor in the Label field.
- 8. Set the Lower Bound to 0.7, the Initial value to 1.0, and the Upper bound to 1.3.
- 9. Set the Format to %8.5f.
- 10. Click **OK**.

11. Repeat steps 1.3 through 1.10 to create two more parameters using the information provided in the table below.

Label	Lower Bound	Initial value	Upper Bound	Format
Head_Rest_position	0.00	0.02	0.04	%8.5f
Force_Penetration_scale_factor	0.8	1.0	1.2	%8.5f

12. Click Save.

- 13. In the Save Template dialog, navigate to your working directory and save the file as a_hffoam_TEST.tpl.
- 14. Close the **Parameter Editor** dialog.

Step 2: Create the madymo_DOE.bat File

- 1. In your favorite text editor, open a new file.
- 2. Enter the following text line: "C:\Program Files\Madymo\madymo_75\em64t-win\bin\madymo75.exe" -i a_hffoam_TEST.xml

Note: This example assumes that you are using MADYMO V7.5 on a Microsoft Windows platform.

- 3. Save the file as madymo_DOE.bat.
- 4. Close the text editor.

Step 3: Register Madymo as a Solver Script

- 1. From the menu bar, click *Edit* > *Register Solver Script*.
- 2. In the Register Solver Script dialog, click Add Solver Script.
- 3. In the HyperStudy Add dialog, enter MADYMO_DOE in the Label and Varname fields.
- 4. For solver script type, select *Generic*.
- 5. Click **OK**.

- 6. In the **Path** column of the script **MADYMO_DOE**, click .
- 7. In the **Open** dialog, navigate to your working directory and open the madymo_DOE.bat file.
- 8. Click *Close*.

Step 4: Perform the Study Setup

- 1. To start a new study, click *File* > *New* from the menu bar, or click *on the toolbar*.
- 2. Optional: In the HyperStudy Add dialog, enter a label for the study in the Label field.
- 3. In the **Location** area, navigate to your working directory.

- 4. Optional. If you would like to create a new study specific folder, select the **Create study directory in subfolder, based on Varname** check box.
- 5. Click **OK**. The study opens in the **Explorer**.

🛃 HyperS	tudy - Add
Label:	Study 1
Varname:	s_1
Location	
С:\Нур	verStudy\HST Tutorials 🔹 💌
Crea	te study directory in subfolder, based on Varname
	OK Cancel

- 6. To continue on to the **Define models** step, click **Next** twice, or click **Define models** in the **Explorer**.
- 7. To add a model, click **Add Model**.
- 8. In the HyperStudy Add dialog, add one Parameterized File model.

🛃 Hypers	Study - Add		×
Label:	Model 1		
Varname:	m_1		
Select	Туре		
	{}	f()	
Para			Spreadsheet
н	vperMesh	MotionView	Workbench
	ОК	Cancel	Apply

- 9. In the **Resource** column of **Model_1**, click ⁽¹⁾.
- 10. In the **Open File** dialog, navigate to your working directory and open the a_hffoam_TEST.tpl file.
- 11. In the **Parameter Editor**, review the a_hffoam_TEST.tpl file and then click **OK**.
- 12. In the **Solver input file** column, enter a_hffoam_TEST.xml;d_hyb350el_inc.xml. This is the name of the solver input file HyperStudy writes during any evaluation.
- 13. In the Solver execution script column, select MADYMO_DOE (MADYMO_DOE).

🦨 Defi	ne models								
🖸 Add M	odel 🛛	Remove M	lodel						
Active	Label	Varname	Model Type		Resource		Solver input file	Solver execution script	Solver input arguments
1 🗸	Model 1	m_1	Parameteri	()	C:/Users/ {	ABC }	a_hffoam_TEST.xml;d_hyb350el_inc.xml	MADYMO_DOE (M	Sfile

- 14. Click *Import Variables*. HyperStudy imports three design variables from the a_hffoam_TEST.tpl resource file.
- 15. To continue on to the Define design variables step, click Next.
- 16. Review the design variable's lower and upper bound ranges.
- 17. To continue on to the **Specifications** step, click **Next**.

Step 5: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click **Apply**.
- 3. To continue on to the **Evaluate** step, click **Next**.

4. In the Settings tab, select the Write, Execute, and Extract check boxes.

Tasks	Evolution D	ata 📐 E	volution Plot		•
StepIndex	Write	Execute	Extract	Vrite Execute Extract	4
				🖹 Run tasks 🗐	More

- 5. Click *Evaluate Tasks*. HyperStudy creates an approach/nom_1/ directory inside the study directory.
- 6. To continue on to the **Define responses** step, click **Next**.

Step 6: Create and Define Responses

- 1. To add a response, click **Add Response**.
- 2. In the HyperStudy Add dialog, add four responses labeled: NTF, NTE, NCF, and NCE.

2	Add R	ne response	es Remove	Response		
	Active	Label	Varname	Expression	Value	Comment
1	V	NTF	r_1		NotExtracted	
2	V	NTE	r_2		NotExtracted	
3	V	NCF	r_3		NotExtracted	
4	V	NCE	r_4		NotExtracted	

- 3. In the **Expression** column of the response **NTF**, click
- 4. In the Expression Builder, click the ASCII Extracts tab.
- 5. To add an extract source, click Add Extract Source.
- 6. In the HyperStudy Add dialog, add one extract source labeled NTF_peak.
- 7. In the **File Path** column of **NTF_peak**, click .
- In the Extract File dialog, navigate to the approaches/nom_1/run_00001/m_1 directory and open the a_hffoam_TEST.peak file.
- 9. Select the *Keyword* check box and enter NTF_ing.
- 10. Click Next. HyperStudy locates NTF_inj in the file.
- 11. In the **Offset** field, enter 87.
- 12. In the **Length** field, enter 11.
- 13. Click **OK**.
- 14. Click Insert Varname. The expression NTF_peak[0] appears in the Evaluate expression field.
- 15. Click *Evaluate expression* The expression NTF_peak[0] changes to 0.0220855.
- 16. Click **OK**.
- 17. To create and define extract sources for the responses NTE, NCF, and NCE, repeat steps 6.3 through 6.16, except change the labels and keywords as indicated in the image below.

6	🕑 Evaluate exp	pression							KÜ	CH	1
N.	IF_peak[0]										
,	Functions	¦∐+ Design∖	Variables	Res	ponses		File Sou	irces	<u> </u>	ASCII Extra	cts
1	Add Extract	Source 🛛 Rer	nove Extract Sourc	e	1 Inser	t Varna	me	+	- *	1 ^	0
	Label	Varname	File Path		Offset	Lei	ngth	Use ke	eyword	Keywo	rd
1	NTF_peak	f_1	C:\Users\	87		11				NTF_inj	
2	NTE_peak	f_2	C:\Users\	87		11		V		NTE_inj	
3	NCF_peak	f_3	C:\Users\	87		11		1		NCF_inj	
4	NCE_peak	f_4	C:\Users\	87		11		V		NCE_inj	

Step 7: Run a DOE Study

1. To add an approach to the study, right-click in the **Explorer** and select **Add Approach** from the context sensitive menu.

2. In the HyperStudy - Add dialog, add one Doe approach.

- 3. To continue on to the **Specifications** step, click **Next**.
- 4. In the work area, set the **Mode** to *Full Factorial*.
- 5. Click the *Levels* tab.
- 6. Change the number of **Levels** from 2 to 3 for all variables.
- 7. Click **Apply**.
- 8. To continue on to the **Evaluate** step, click **Next**.
- 9. Click *Evaluate Tasks*. HyperStudy extracts all 27 simulations.
- 18. After the results are extracted, click *Next* to continue on to the **Post processing** step.

See Also: HyperStudy Tutorials