

Switched Reluctance Motor (SRM) Multiphysics simulation

Altair

Mohammed Elamin – Application Engineer

CONTENTS

- SRM Operation.
- Case study.
- Electromagnetic simulation of SRM:
 - > Static simulation.
 - > Transient simulation.
- System and control:
 - > Different modeling approaches.
 - > Open loop control and comparison.
 - Closed loop (Speed) control.
- Mechanical Vibroacoustic:
 - ➢ Noise and vibration in SRM.
 - Magnetic force analysis.
 - Frequency response and modal analysis

SRM OPERATION

- SRM has double salient structure.
- Electromagnetic torque generation depends on minimizing the reluctance of the flux path.
- Electromagnetic torque:

$$T = \left[\frac{\partial W_c}{\partial \theta}\right]_{i=const} T = \frac{1}{2} i^2 \frac{dL}{d\theta}$$

- Ideal inductance profile (ignoring saturation and fringing effect)
- Aligned and unaligned position
- Motoring and generating regions

Ideal inductance profile

SRM OPERATIONS

- SRM requires electronically commutated excitation
- AHB is the most used power converter to drive SRMs
- Magnetization, demagnetization, and free-wheeling
- Control parameters: turn-on angle, turn-off angle, and the reference current.

Asymmetric half bridge (AHB) converter

CASE STUDY

Application	Washer machine
Number of phases	3
Number of stator/rotor poles	12/8
Stator Outer Radius	69.76 mm
Stator Inner Radius	41.935 mm
Shaft Radius	8.54 mm
Air gap	0.445 mm
Stack Length	46.92 mm
Number of turns per pole	150
Number of parallel path	2
Phase resistance	2 Ohm
Core material	M19_29G

Ref – (Abd Elmutalab, Mohamad. "EXTENDING THE SPEED RANGE OF A SWITCHED RELUCTANCE MOTOR USING A FAST DEMAGNETIZING TECHNIQUE." Electronic Thesis or Dissertation. University of Akron, 2016)

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

ELECTROMAGNETIC

MOTOR OVERLAY

 Automatic build of motor geometry (periodicity & boundary condition, mesh and some parts of the physics).

• Define the different parameters: General, airgap, stator, rotor and winding.

FLUX PROJECT

 Final geometry built by the overlay (predacity and mesh automatically created)

• Full geometry of the motor.

STATIC CHARACTERISTIC

- Can be fully determined by the static torque and flux linkage for different current levels and rotor positions.
- Only one phase is excited with constant current.
- Simulation done for half electric cycle, the entire cycle can be extrapolated (symmetric)
- Similarly a static curves for the forces can be developed as well.

TRANSIENT SIMULATION

- AHB Converter can be defined inside Flux.
- Control the switching timing.
- Simulate both chopping and single pulse mode
- Chopping Mode is possible by using user defined function (groovy function) to define the hysteresis control
- Kinematics coupling (constant speed or coupled load)

Sedit Switch[SWITCH_1]

×

TRANSIENT SIMULATION

• Single pulse mode used in high speed, current is limited by BEMF.

• Chopping mode for low speed, current is limited by the controller using hysterias control (Soft or hard switching)

Speed: 1000 rpm Turn on angle: 0 deg Turn off angle : 140 deg

- Speed: 500 rpm
- Turn on angle: 0 deg
- Turn off angle : 140 deg
- Ref current: 2.5 A
- Hysteresis band : 0.2 A

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

SYSTEM AND CONTROL

WHY ACTIVATE ?

- Easy and intuitive to use, The user can set up the model using blocks (either logical or physical).
- Model the whole system including (controller, inverter, external disturbances,)
- The possibility to use analytical or look up tables (LUTs) model. This can reduce the simulation time and allow faster study to the effect of the different system parameters.

WHAT IS POSSIBLE?

- System level:
 - Open loop control.
 - Closed loop control.
- SRM motor model
 - Flux model (co-simulation block).
 - Look up tables model(LUTs generated from static simulation in Flux).
- Inverter model
 - Only inverter logic.
 - Physical representation with switches and diodes (Modelica library).

Block diagram of SRM Open loop control

OPEN LOOP CONTROL – INVERTER LOGIC

- The Commutation block defines the reference current of each phase based on the ref Max current, Turn on angle, Turn off angle and Speed.
- The Hysteresis block defines the logic of SRM inverter and provide the voltages at the phases terminals.

1 I ref

2>> theta_on

3 theta_off

45

Constant

45

Constant3

45

Constante

15

Constant

15

Constant1

4 angle

15-u1 Fcn

30+u1 Fcn2

Remainder

Math

Function3

Remainder

Math

Function1

Remainder

Math

Function2

Upper limit

Lower limit

Upper limit

Lower limit

Upper limit

Lower limit

input Outpu

Dynamic Interval 2

+sc>

input Outr

Dynamic Interval 1

input Output

Dynamic Interval

OPEN LOOP CONTROL – PHYSICAL INVERTER

- The Hysteresis block generate the switching commands.
- The convert block has the physical representation of the inverter using Modelica library.

OPEN LOOP CONTROL – SRM MOTOR MODEL

- The simulation time and resource can be reduced significantly by using LUTs based model.
- Torque and Flux linkage characteristics curves obtained from the static analysis will be use.

RESULTS COMPARISON

- Test Point.
 - Speed: 1000 rpm
 - Turn on angle: 0 deg
 - Turn off angle : 140 deg
 - Ref current : 5 A

- Simulation time:
 - Flux : 591 sec
 - co-simulation methods : 706 sec.
 - LUTs based model : 0.015 s.

- · All methods have similar results .
- Average Torque of Flux method 0.934 N.m compared to 0.92 Nm from Actual test Data (less than 2% error). Ref. Abd Elmutalab, Mohamad. "EXTENDING THE SPEED RANGE OF A SWITCHED RELUCTANCE MOTOR USING A FAST DEMAGNETIZING TECHNIQUE." Electronic Thesis or Dissertation. University of Akron, 2016.

SPEED CONTROL SET-UP

- Additional blocks:
 - Speed PI controller.
 - The mechanical coupling.
 - Speed and load commands.

Mechanics $T_e - T_{load} - T_{friction} = J \frac{d\omega_m}{dt}$

SPEED CONTROL - RESULTS

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

MECHANICAL VIBRATION ANALYSIS

VIBRATION AND NOISE IN SRM

- Sources of the acoustic noise:
 - Mechanical
 - Aerodynamic
 - Electromagnetic
- Due to its saliency structure and phase commutation the variation of the radial force is very high in SRMs.
- The magnetic force F consists of two components: the tangential component F_t and the radial component F_r .
- Vibration and noise arise at the natural frequencies.
- The deformation caused by the resonance will often form along the circumference of the stator surface
- The vibration of the outer surface generate airborne acoustic noise

Circumferential mode shapes

MAGNETIC FORCE - ANALYSIS

- Create sensor to calculate the radial and tangential forces on the stator teeth.
- Analysis the harmonic spectrum of the force.

Spatial formula *	
Comp(1,VLCS(CENTER_COORD,dFmagS))	f()
Type of integration	
Integration in the domain depth	•

MECHANICAL ANALYSIS CONTEXT

Forces at nodes

- Create different types of support for the forces calculation.
- Possibility to calculate the magnetic force the support and visualize the forces.

Global forces

MODEL

- No CAD model was available.
- Approximated Model created in Flux.

Stator

End Caps

Windings

MESH

- Simlab will be used to create the mesh for the mechanical model.
- Possibility to control and apply different local mesh control, defeature the geometry
- Export the mesh of the stator teeth to be used in Flux.

1	
DA	
V7	
Flux	

File name:	FLUX
Save as type:	OptiStruct File (*.fem)

Quadrangular mesh in the stator teeth

Mechanical Mesh

FORCE CALCULATION AND EXPORT

- Import of the mechanical mesh in the stator teeth.
- The force and harmonics computed on the imported support.

New Force	computation					
ForcesComputation Imported mesh						
Comment						
Force compu	utation method					
Computation	n of surface magnetic for	rces on rotati	ng mac	hine imported r	nesh	-
Computatio	n parameters					
Support to c	compute forces *					
IMPORTED	_SUPPORT					-
Computatio	n radius in airgap (in m.	.)*				
0.0418237	5					fO
Slots openin	ng angle (in deg.) *					
14.999						f()
Computation	i interval					
X choice	Parameter name	Current v	alue	Limit min	Limit	max
	TIME			✓ 0.015	✓ 0.02	25
Real m	Real mechanical frequency (Hz)		16.66666666666666			
Computed mechanical frequency (Hz)		16.6666666666666				
Number of duplications		8				
The selected timeslot allows to perform a satisfying duplication.						
Data to compute : *						
Forces & harmonics with signal duplication						
	Cancel	0				

- The forces can be extrapolated considering the periodicity and the axial length.
- Export of the computed force (several formats are available)

Computed Force at one instant

Imported mesh support

SETTINGS

- Create materials and properties.
- Define 1D Bolts (automatically define different RBE and rigid bars)

Material	Part	Young Modulus (Gpa)	Poisson ratio	Mass density (Kg/m^3)
Steel	Stator	210	0.3	7800
Aluminum	End caps	70	0.33	2700
Copper	Winding	128	0.33	8960

RBE and Rigid bars

- Define contacts between stator/end caps, stator/winding. (TIE types in Optistruct)
- Define fixed constraints in the top end cap.

Fixed

constraints

 \bigtriangleup

SETTINGS

- Import force loads from Flux. Four load cases will be generated.
- Set the constraint and the setting for each load case:
 - Method to extract normal modes : AMES
 - Maximum frequency set to 8516.7 Hz (maximum frequency exported from Flux)
 - Eigen values extracted from the normal mode analysis will be used for other load cases.

- a new set of nodes in all outer surfaces to calculate equivalent radiated power (ERP).
- Define air properties for ERP calculation
- Request outputs of ERP, deformation, velocity and acceleration.

Create Text Input						
Solver type	OptiStruct 🗸					
Section	Bulk Data					
Model name	NM_MOTOR2_VM.gda					
PARAM ERPC340000 0 PARAM ERPRETD9, 1.0-9 PARAM ERPRID, 1.225-12 PARAM,ERPRIE, 1.0						
Import Eport Save Cancel						
	Solver Settings					
	Solver OptiStruct					
Analysis Modal Frequency Response						
	Solution Parameters Output Requests					
 Output File Options 						
Output Parameters						
Equivalent Radiated Power GRI		GRID				
Displacement		ALL				
	Velocity	ALL				
	Acceleration	ALL				
	Constraint Force	ALL				
Frequency Analysis output False						

MECHANICAL MODEL - RESULTS

- Results available in H3D format and can be viewed/post-processed using HyperView / HyperGraph.
- Modal analysis allow to determine the frequencies associate to the mode shapes of the structure.
- According to the literature, mode shapes with m equal 2 and 4 are the most dominant for SRM.

m-number	1	2	3	4
Frequency	1578 Hz	2588 Hz	4486 Hz	6832 Hz
	1584 Hz	2615 Hz		6983 Hz

MECHANICAL - RESULTS

- Contour plot of deformation, velocity, acceleration at specific frequency.
- Contour viewed in the radial direction (cylindrical coordinate system)

Contour Plot Equivalent Radiated Power (ERP_TC)(Grid Contributions)

ERP (W)

MECHANICAL MODEL- RESULTS

• Plot of deformation over the frequency range.

MECHANICAL MODEL - RESULTS

plots of acceleration and ERP over the • frequency range.

2000

1000

3000

4000

Frequency (Hz)

5000

6000

7000

8000

9000

WORKFLOW

Step 1: Simlab

- Mesh the model
- Export the mesh on the stator teeth

Step 3: Simlab

- Import (Load) the forces from Flux
- Create the model settings(Materials, constraints and contacts)
- Set the solving setting

Step 4: Optistruct

Solve frequency response analysis

Step2 :Flux

- Import the mechanical mesh
- Compute the forces on the mesh nodes
- Export the different harmonics of the force.

Step 5: HyperView/Graph

- Post-processing of the results:
 - Mode shapes
 - Deformation
 - Acceleration
 - ERP

CONCLUSION

> More demand for multi-physics simulation in the market today.

> Flux can consider both the FEA domain and also the power electronics and control.

> Activate can help with building the control system (blocks based instead of scripts).

> Activate can help to build simplified model of the motor (LUTs or analytical).

Coupling (work flow) between Flux and Simlab/Optistruct is possible to perform Vibracoustic ananlysis.

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Thank You

