Optimizing and accelerating product development efficiency with "One Model, One Solver", OptiStruct

Junji Saiki – SVP Head of OptiStruct Development

Altair OptiStruct Evolution

1990s

Linear Statics

Normal Modes

Inertia Relief

Topology Optimization

Size Optimization

Topography Optimization

Shape Optimization

2000s

Complex Eigenvalue

Frequency Response

Response Spectrum

Transient Response

Buckling

Heat Transfer

Super Elements

Random Vibration

Nonlinear Statics

Large displacement

Rotor dynamics

Composites

Contacts

Hyperelasticity

Brake squeal

Post Buckling

Present

Nonlinear Transient

Plasticity

Aeroelasticity

Fatigue

Explicit Dynamic

Electrical Analysis

Piezoelectricity

Forming

OptiStruct v1.0
INDUSTRY WEEK's
Technology of the Year

Altair OptiStruct - Complete and Competitive Solutions

Linear/Nonlinear Static

Normal Modes

Linear Buckling

Complex Modes – Brake Squeal

Frequency Response (Modal, Direct)

Linear/Nonlinear Transient Response (Modal, Direct, Fourier)

NVH (Coupled Fluid-Structure FR)

Random Response

Response Spectrum/DDAM

Linear/Nonlinear Steady State Heat Transfer

Linear/Nonlinear Transient
Thermal

Rotor Dynamics

Acoustics – Infinite Element/APML Fatigue

Aeroelasticity

Explicit

Electrical Analysis

Piezoelectricity

One step Forming

Electrostatic

CFD – Cooling (Q4 2025)

Cavity Radiation (Q4 2025)

OptiStruct Vision

THE Solver for linear and non-linear Analysis with powerful Optimization Technology

One Model, One Solver (Multi-Physics)
Pervasive Optimization
High Scalability

BIW: OptiStruct Workflow

One Model One Solver

Single Input file with Multiple Load cases

No model conversion needed in order to run different loadcases

Design Optimization with multiple Design Criteria

MBD Road Simulation to FE-Load

Vibration OptiStruct

Brake Load, Speed Bump ,Pothole NL Static OptiStruct

Modal Transient OptiStruct

PSD Fatigue
OptiStruct

△ ALTAIR

Multi-Physics – OptiStruct

Static Mechanical

Stiffness analysis
Bolt slippage and bolt stresses
Cooling plate overpressure
Lifting analysis (sagging-bulging)

Dynamic Mechanical

Modal Analysis
Vibration Fatigue
Pack weld fatigue
Module mechanical Shock

Thermo Electric Mechanical

OCV v SOC
Rate Capability Charge & Discharge
Hybrid Pulse Power Characterization
Cycle Life Ageing
Storage
Rapid Charging / Discharging Charging
Swelling - Mechanical
Thermo Electric Mechanical Fatigue

Optimization

Weight Optimization
Multi Attribute Performance
Optimization
Cell / Module / Pack Layout
Optimization

Altair® OptiStruct®

THERMO ELECTRIC MECHANICAL

Explicit Dynamic Analysis

Target Use case for OptiStruct

Impact Analysis

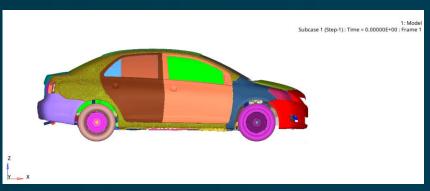
- Roof Crash, Side pole impact, Seat Belt Anchorage etc...
- Drop tests (consumer goods, containers, ...)

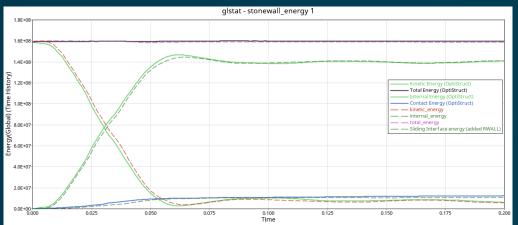
Fluid Structure Interaction

- Sloshing & Slamming problems especially in shipbuilding industry
- Wave impacts on offshore structures
- Ditching of aero planes
- Bird strikes, water , debris, ice impacts,

Blast & Hydrodynamic Impacts

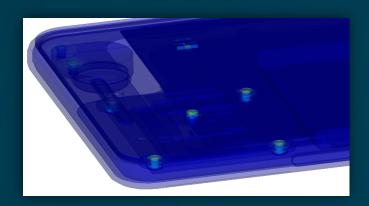
- Explosion mechanism studies
- Blast effects on structures (effect of a mine on a vehicle, ..)
- Military systems functioning (shape charges, ...)



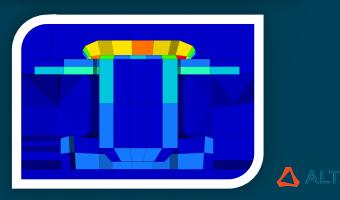


YARIS CRASH

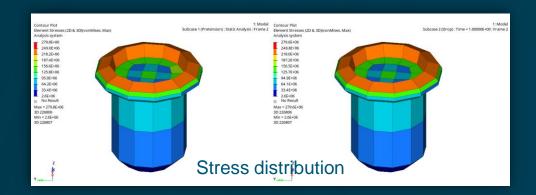
FINITE ELEMENT MODEL DATA INFORMATION : Total # of Grids (Structural) : 1498230 Total # of Elements Excluding Contact: 1612604 Total # of N2S Contact Elements (3D) : 236516 (Explicit) Total # of E2E Contact Elements (3D) : 51020 (Explicit) Total # of Rigid Elements 3996 Total # of Rigid Element Constraints : 185231 Total # of Local Coordinate Systems : 4564 Total # of Degrees of Freedom 8022843 (Structural) Total # of Non-zero Stiffness Terms for this Local Domain : 46522614 Element Type Information CBEAM Flements 313 CHEXA Flements. 249668 CTETRA Elements 186 CPENTA 9949 Elements CONM2 Elements 193605 Elements CQUAD4 : 1079146 CTRIA3 Elements 63952 CBUSH Elements 4521 JOINTG Elements


# of cores	OptiStruct	Radioss
32	2:27:37	2:55:50

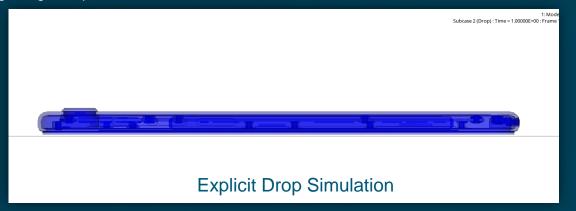
Implicit – Explicit Continuation


Implicit subcase and Explicit subcase in single input file

Explicit subcase continues from the end of implicit simulation

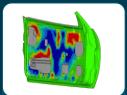


Implicit results (Tightening the screw)

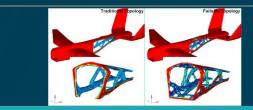


Implicit – Explicit Continuation

At the end of Implicit subcase


Beginning of Explicit subcase

Optimization


Topology

Topography

Multi Model Optimization

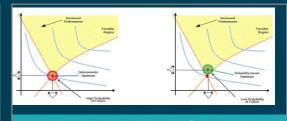
Failsafe Topology

Shape

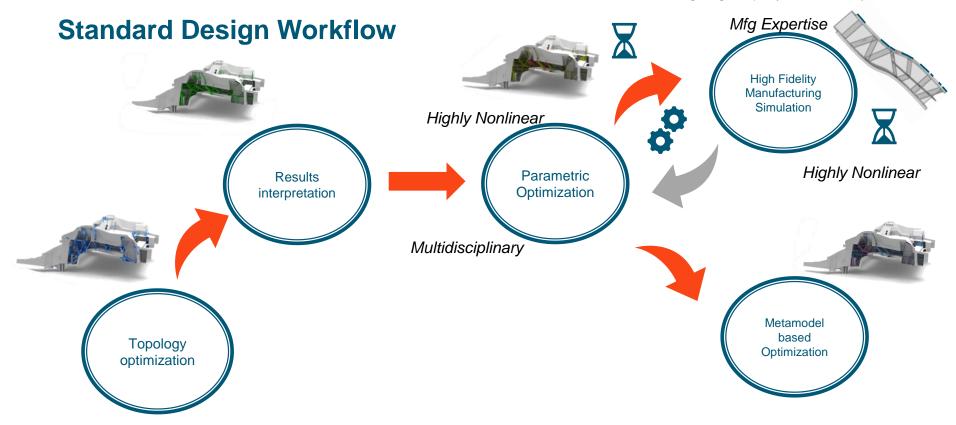
Size

Composite Layout

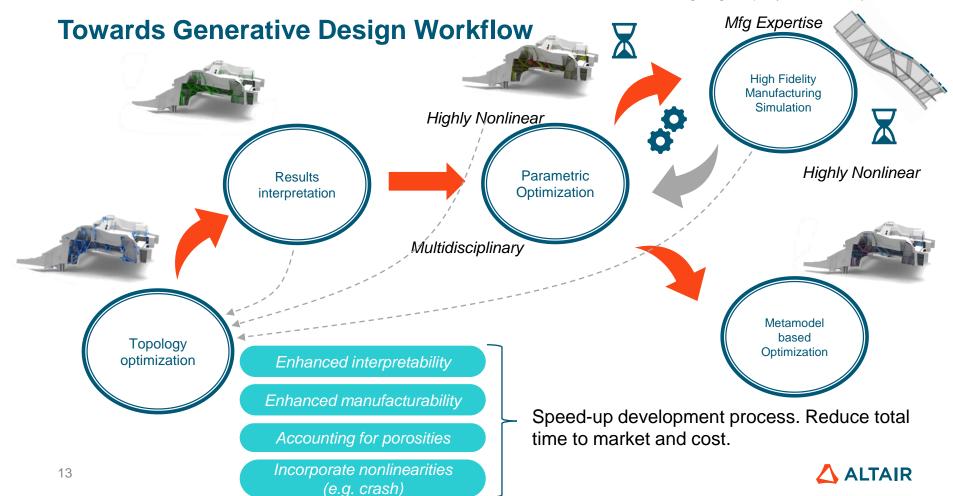
Multi Material Optimization

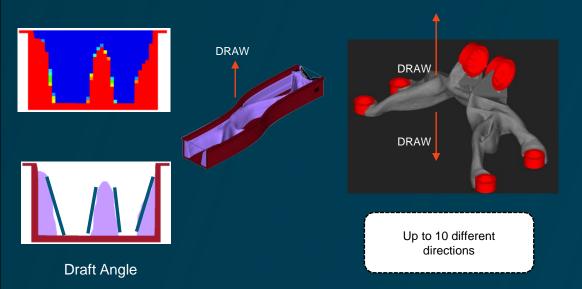

Free Shape

Free Size



Lattice Structures


Reliability-based Design Optimization



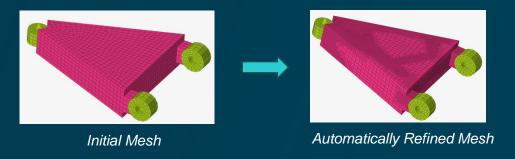
Manufacturing process related constraints

Enhanced Manufacturability and Interpretability

- Draft-Angle Constraint
 - Ease of part removal, Minimize Mold damage etc...

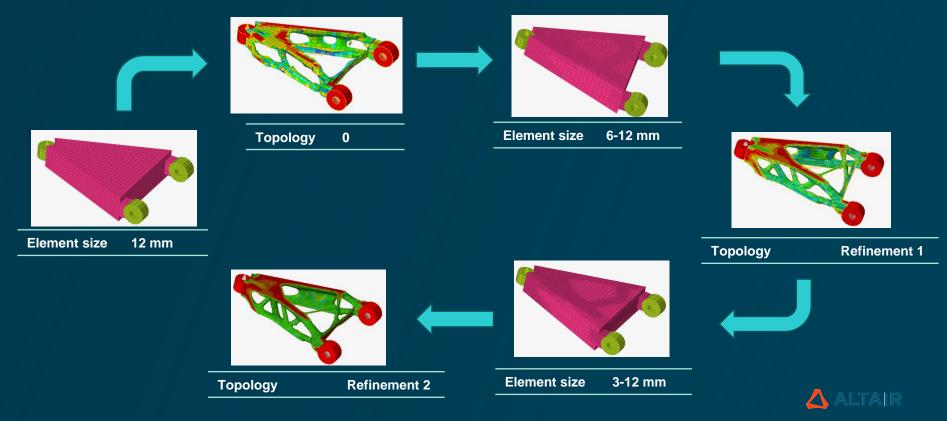
NOHOLE option to support filling available from 2025.1

Auto-Mesh Refinement in Topology Optimization

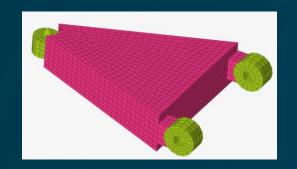

Motivation and Capabilities

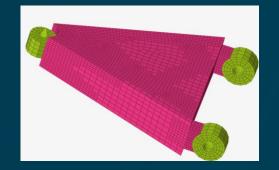
Why?

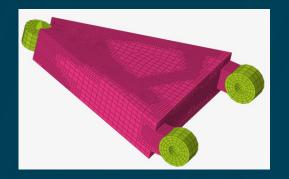
- To get more detailed results
- To reduce solution time

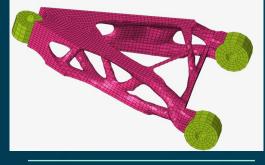

How?

- Use coarse meshes but internally and automatically refine them iteratively based on topology optimization results. Utilize the power of HyperMesh meshing capability.
- Target Release : v2026 (end of the year)






Auto-Mesh Refinement Example


Auto-Mesh Refinement Example

Topology 0

Topology Refinement 1

Topology Refinement 2

Performance Comparisson

Refinement 2

1	VOLUM	Volume			TOTL	1.395E+06	MIN			
2	DISPL	DISP	1	2699	TXYZ	1.991E-02	<	2.000E-02	0.0 1	A
2	DISPL	DISP	2	2699	TXYZ	4.983E-02	<	5.000E-02	0.0 1	À.
2	DISPL	DISP	3	2699	TXYZ	3.986E-02	<	4.000E-02	0.0 2	A

Element size 3 to 12 mm

elements 99,020

iterations 64 (including ref 1 and 0)

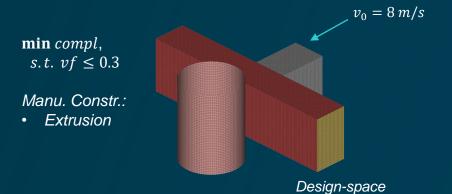
Run time 1 h 1 min (all runs)

Refence Solution using Fine mesh

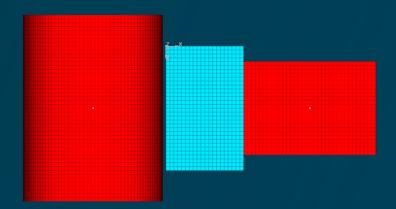
1	VOLUM	Volume			TOTL	1.415E+06	MIN			
2	DISPL	DISP	1	2699	TXYZ	1.992E-02	<	2.000E-02	0.0 A	
2	DISPL	DISP	2	2699	TXYZ	4.986E-02	<	5.000E-02	0.0 A	
2	DISPL	DISP	3	2699	TXYZ	3.985E-02	<	4.000E-02	0.0 A	

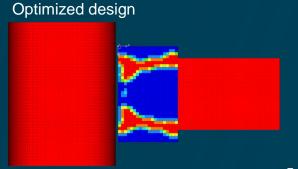
Element size 3 mm

elements 223 872


iterations 41

Run time 4 h 20 min

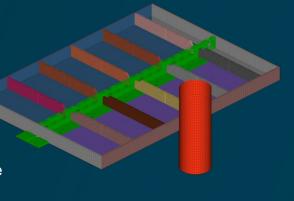

Topology Optimization with Explicit Analysis

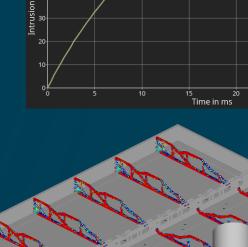

Extruded Rocker

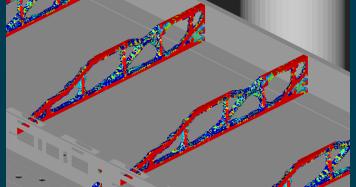
Summary:

- 17 design iteration
- Shell interpretation necessary for further evaluation

Optimized

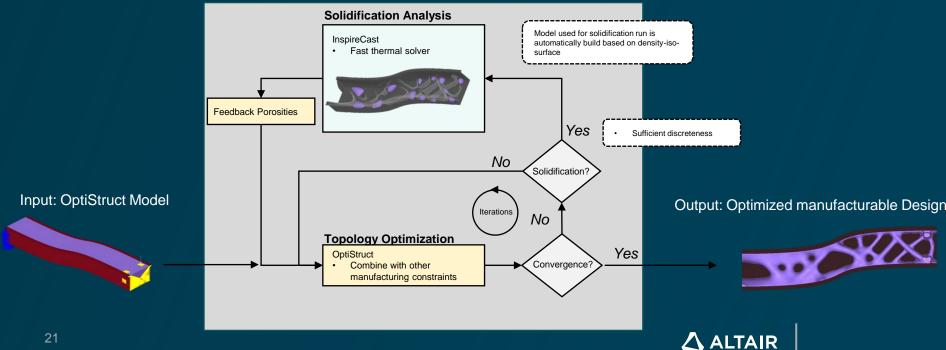

Topology Optimization with Explicit Analysis

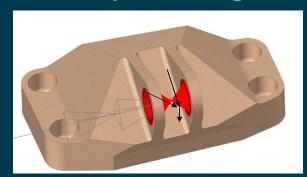

Battery Pack min compl, $s.t. vf \le 0.3$


Manu. Constr.:

Pattern Repetition

≈ 1 M. elements500k tetra design-space550k shell elements



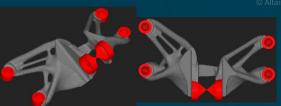


Topology Optimization coupled with Inspire Cast

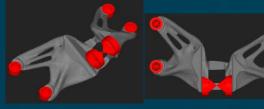
Topology Optimization to take into account the porosities from Casting Solver

Example – Jet Engine Bracket

min comp, $s.t. vf \le 0.1$ $v.m.str \le 903$.


Manu. Constr.:

- Mindim
- Split Draw
- Draft Angle


Summary:

- Standard result is infeasible due to stresses
- Similar number of iterations
- Best compliance with coupling

Standard Top.-Opt.

Coupled with Casting Solver

Converged design

comp: 5.311E4,

constraint violation: 0.4 % A

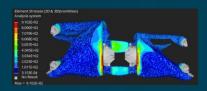
Discreteness: 70.%

Post-processed design

comp: 5.583E4,

constraint violation: 5.2%

Porosities


Final Design

Converged / Post-processed design

compl: **5.297E+04**

constraint violation: 0.8% A

Discreteness: 71.%

Why OptiStruct?

Injecting Efficiencies and Innovation

Process Improvement

1

2

One model, multiple attributes, one solver.

Multi-Physics

NVH, Durability, Electrical, Thermal, Multiphysics, etc.

Innovation

Weight reduction

Sustainability

3

Physics, "do it right"

Interface with 3rd parties

4

Business Model

Power of Unique License model

Partnership with support and special development

Thank You △ ALTAIR