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A shell facet model for preliminary design of cylindrical
composite structures
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Summary. The laminated composite lay-up design typically involves trade-offs between mate-
rial selection, thickness of the layer, orientation of the layers, and the stacking sequence. Finding
the right structural concept early in the design process leaves resources for the detailed design.
Many structural members made of laminated composite materials have the form of thin walled
cylindrical shells that are prone to buckling. Thus it is desirable to find structural designs that
satisfy global requirements for structural stability early in the design phases. In this work,
thin-walled cylindrical composite shells under different loading conditions have been studied for
structural stability. The simulation is performed with a shell facet model implemented in the
ESAComp software. Preliminary design tools for structural stability of thin-walled cylindrical
composite shells are demonstrated and discussed.
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Introduction

Fiber-reinforced polymer composites are usually thin-walled laminated shell structures
that are prone to buckling. The laminated composite lay-up design typically involves
trade-offs between material selection, thickness of the layer, orientation of the layers,
and the stacking sequence [1, 23]. Fast and reliable computational methods for stability
analysis of laminated composite shell structures are required in the preliminary design
phase.

Low buckling loads and geometrical imperfections are closely related for thin-walled
cylinders [3, 17, 18, 20]. Already at small imperfection amplitudes the actual buckling
load can be well below the result obtained for an ideal structure with linear buckling anal-
ysis. By definition, a geometrical imperfection is a deviation from the perfect cylindrical
geometry. Geometrical imperfections have been demonstrated to have clearly the highest
influence on the buckling load when compared to, for example, the effect of thickness
variations, stress variations, and boundary stiffness. The real imperfections are often un-
known, but in the design process the influence of the imperfections has to be taken into
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Figure 1. Cylinder load cases – axial, torque, bending.

account properly to achieve a safe structure. Design guidelines, such as NASA SP-8007
[4], do not require knowledge about the pattern or even amplitude of the imperfections.
Instead, very conservative knock-down factors are used.

Measuring the real imperfections and implementing them into the numerical analysis
have been traditionally very costly, but result in less conservative design loads. Real-
istic geometrical imperfections in a numerical analysis are such that they describe the
existing pre-buckling shape and size as good as possible. This approach assumes that
specific manufacturing processes statistically result in basically the same imperfections.
It has been assumed that the eigenform affine patters are the worst imperfections. Later,
axisymmetric imperfections were believed to show the worst behavior.

Stimulating imperfections is another approach where a local imperfection is generated
to the geometry. The Single Perturbation Load Approach (SPLA) belongs to this class and
it has been widely studied in the ongoing DESICOS project [13, 15, 18, 20]. Hühne [17, 18]
showed by numerical and experimental investigations that the collapse of cylindrical shells
always starts with a single buckle.

In the preliminary design often 3D model can be idealized with simplified geometry.
Focus is in the material selection and laminate lay-up design. Numerous iterations are
needed and therefore, model creation needs to be easy, computation time short and results
need to be reliable. The presented shell facet model as such suits also in the detailed design
phase, but typically that design phase involves, at least partly, solid modeling to consider
discontinuities.

In this work, thin-walled cylindrical shells with radius-to-thickness ratio of 160-500
under different loading conditions as shown in Figure 1 have been studied for struc-
tural stability. The simulation is performed with a shell facet model implemented in the
ESAComp software [1] The shell facet model was implemented with the Elmer open-source
Finite Element Method (FEM) solver [2, 19, 21] developed by CSC - IT Center for Science
(CSC) in collaboration with Finnish universities, research laboratories, and industry.

ESAComp development started in 1992 at Helsinki University of Technology (now
known as Aalto University) as a project initiated by the European Space Agency (ESA).
In 2000 Componeering, a Helsinki based company founded by the original project team,
took over the development. ESAComp is a proprietary licensed software owned by Com-
poneering. ELMER technology has been integrated in ESAComp for the realization of
the FE analysis capability with an agreement between Componeering and CSC.

The ESAComp software provides a user-friendly approach to introduce geometrical
imperfections into the geometry. The shape of the imperfection can be generated with
a linear buckling analysis and scaled by a user-defined amplitude. For cylindrical shells
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Figure 2. a) The ESAComp [1] specification dialog for cylinder analysis; b) an axisymmetric imperfection
with seven half-waves; c) the first buckling mode shape according to the linear buckling analysis; d) a
closed skewed imperfection - the end cross-sections of the cylinder have a perfect round shape. There
are three axial half-waves and five circumferential waves in the structure. The skewedness parameter has
been set to 0.5. The amplitude of the imperfection has been extended for visualization.

the distorted shape can be based on analytical formulas as well. Various possibilities are
illustrated in Figure 2. In ESAComp, Reissner-Mindlin-von Kármán type shell facet model
[19, 21] is used for geometrically nonlinear analyses. Tools implemented in ESAComp
are used to study the imperfection sensitivity through the alternation of the shape and
amplitude of the imperfection.

Reissner-Mindlin-von Kármán type shell facet model

The plate bending problem is formulated for a thin or moderately thick laminated com-
posite plate which in its undeformed configuration occupies the region Ω × (−t/2, t/2),
where Ω ⊂ R2 is the midsurface and t > 0 is the laminate thickness. The kinematical
unknowns in the model are transverse deflection w, in-plane displacement u = (ux, uy),
rotation of the shell reference surface β = (βx, βy), and drilling rotation ω. The plate is
subjected to the in-plane load f = (fx, fy) and the transverse pressure g at its reference
plane.
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Let us note that our model is actually a numerical ”shell facet model” since we are in
fact considering one element in the mesh. As far as we know, there is no mathematical
analysis guaranteeing the consistency of this very classical engineering approach, but it
seems to work fine in practice.

We will use standard notation of tensor calculus. Dyadic and index notation with
summation convention over repeated indices are used in parallel. Latin indices take their
values in the set {1, 2, 3} and Greek indices in the set {1, 2}.

Constitutive relation for a single layer

Let us denote by ei and ēj the cartesian basis vectors for the so called 123-coordinate
system of a single ply, and for the xyz-system of material coordinates common to all
plies, respectively. In the material coordinate system, i.e., the laminate coordinate system,
the layer system has been rotated by a positive counter clockwise angle θ about the z-
axis. Hence, we define the transformation matrix between the two coordinate systems as
T = Tij = ei · ēj, or

T =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1)

For linear orthotropic materials, a plane stress state is assumed and the constitutive
relation for each ply has the form

σ = Q : ε (2)

where σ = σij = σji is the second order stress tensor, ε = εij = εji is the strain tensor, and
Q = Qijkl = Qjikl = Qijlk = Qklij is the fourth order tensor of elastic stiffness coefficients.
In the laminate coordinate system the constitutive equation is written as

σ̄ = Q̄ : ε̄ (3)

where σ̄ij = TipTjqσpq is the laminate stress, ε̄ij = TipTjqεpq is the laminate strain, and
Q̄ijkl = TipTjqTkrTlsQpqrs is the tensor of stiffness coefficients in the laminate coordinate
system.

The six independent non-zero components of Q are computed using the orthotropic
material engineering constants E1, E2, ν12, ν21 = ν12E2/E1, G12, G23, and G31 [16] as

Q1111 = E1/(1− ν12ν21), Q2222 = E2/(1− ν12ν21),
Q1122 = ν12E2/(1− ν12ν21),

Q1212 = G12, Q2323 = G23, Q3131 = G31

(4)

Kinematic relations for a laminate

The kinematic relations for a laminate are considered in the xyz-coordinate system. For
notational simplicity, laminate stresses and strains in the xyz-coordinate system are in
the following denoted without bar symbol.

Using the classical kinematic assumptions of Reissner, Mindlin, and von Kármán the
laminate strain is obtained from

ε = ε(u) + ϕ(u,w)− zε(β) (5)

and
ε3α = γα(w, β), ε33 = 0 (6)
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where z := x3, ε is the linear strain tensor, ϕ is the nonlinear membrane strain tensor,
and γ the transverse shear strain vector, viz.

ε(u) =
1

2
(∇u+∇uT ) (7)

ϕ(u,w) =
1

2
(∇ux ⊗∇ux +∇uy ⊗∇uy +∇w ⊗∇w) (8)

γ(w, β) = ∇w − β (9)

Let us note that the original von Kármán strains [3] do not have the quadratic in-plane
displacement gradients in the membrane tensor ϕ. The quadratic in-plane displacement
gradients are considered in the model for the sake of completness and they are not expected
to enhance the accuracy of the original model significantly.

Constitutive relations for a laminate

In plane-stress state, the laminate membrane stress resultants N (forces per unit length)
and bending moment resultants M (moments per unit length) are obtained by integration
of the stress resultants of all layers zk−1 < z < zk, k = 1, . . . , n, over the thickness of the
laminate as

N =

∫ t/2

−t/2
σdz =

∑
k

∫ zk

zk−1

σdz (10)

M =

∫ t/2

−t/2
σzdz =

∑
k

∫ zk

zk−1

σzdz (11)

Furthermore, the resultant transvere shear forces S are obtained from

S =

∫ t/2

−t/2
σ3αdz =

∑
k

∫ zk

zk−1

σ3αdz (12)

Using the constitutive equation and the kinematic relations of Reissner, Mindlin, and
von Kármán we get the following constitutive relations for the laminate

N(u,w, β) = A : [ε(u) + ϕ(u,w)] +B : ε(β) (13)

M(u,w, β) = B : [ε(u) + ϕ(u,w)] +D : ε(β) (14)

S(w, β) = A? · γ(w, β) (15)

The tensors A, B, and D are defined according to the Classical Lamination Theory
(CLT) [16] as

A =
∑
k

∫ zk

zk−1

Q̄ dz =
∑
k

(zk − zk−1)Q̄(k) (16)

B =
∑
k

∫ zk

zk−1

Q̄z dz =
1

2

∑
k

(z2
k − z2

k−1)Q̄(k) (17)

D =
∑
k

∫ zk

zk−1

Q̄z2 dz =
1

3

∑
k

(z3
k − z3

k−1)Q̄(k) (18)

where Q̄(k) defines the constitutive relation for linear orthotropic materials in plane stress
state for layer k in the laminate coordinate system.
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The tensor for transverse shear stiffness A? can be defined according to the CLT [16]
as

A?ij =
∑
k

∫ zk

zk−1

Q̄3i3j dz =
∑
k

(zk − zk−1)Q̄
(k)
3i3j (19)

In ESAComp [1], the computation of the out-of-plane shear stress distribution and stiffness
is based on the theory developed at German Aerospace Center (DLR) [12]. First Order
Shear Deformation Theory (FSDT), i.e., the out-of-plane shear deformation is considered
as an extension to the CLT plane stress assumption in ESAComp.

The shell facet model

The functions u,w, β, ω are determined from the condition that they minimize the poten-
tial energy of the plate. The energy is defined as

Π(u,w, β, ω) =
1

2

∫
Ω

N(u,w, β) : [ε(u) + ϕ(u,w)] dΩ

+
1

2

∫
Ω

M(u,w, β) : ε(β) dΩ +
1

2

∫
Ω

S(w, β) · γ(w, β) dΩ (20)

+C

∫
Ω

[ω − rot(u)]2 dΩ−
∫

Ω

f · u dΩ−
∫

Ω

gw dΩ

where C > 0 is a penalty parameter for imposing the condition ω = rot(u) (see [7]), and

rot(u) =
∂ux
∂y
− ∂uy

∂x
(21)

Substituting the constitutive equations in Eq. 20, we get

Π(u,w, β, ω) =
1

2

∫
Ω

ε(u) : A : ε(u) dΩ +

∫
Ω

ε(u) : B : ε(β) dΩ

+
1

2

∫
Ω

ε(β) : D : ε(β) dΩ +
1

2

∫
Ω

γ(w, β) · A? · γ(w, β) dΩ (22)

+C

∫
Ω

[ω − rot(u)]2 dΩ +
1

2

∫
Ω

ϕ(u,w) : A : ϕ(u,w) dΩ

+

∫
Ω

ε(u) : A : ϕ(u,w) dΩ +

∫
Ω

ε(β) : B : ϕ(u,w) dΩ−
∫

Ω

f · u dΩ−
∫

Ω

gw dΩ

Geometrically nonlinear analysis

To obtain the load-displacement curve and to study the stability behaviour, the nonlinear
equations are solved iteratively by Riks’ method with Crisfield’s elliptical constraint for
arc length [5, 6, 9]. The differential equilibrium equations of the minimization problem
are obtained using standard variational calculus and integration by parts. The linearized
equations are then discretized by the finite element method.

The algorithm is based on the Newton iteration, which follows the principal equilibrium
path. The resulting linear system is solved by minimizing the energy, and if there is no
minimum, i.e., if there is a negative coefficient matrix, it will terminate. All solutions
presented in the paper are obtained for positive definite coefficient matrices. Hence, in
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the post-buckling region the algorithm follows the principal equilibrium path with the
minimal stiffness.

Let the equilibrium equation be defined as

F (q, λ) ≡ λP (q)−R(q) = 0 (23)

where the unbalanced or residual force is denoted by F , P and R are the external and
internal loads, respectively, q = (ux, uy, w, βx, βy, ω) are the nodal displacements of the
FE-solution and λ is the load scaling factor serving as a control parameter of the system.
In this work, the reference load P is assumed to be independent of q.

Using the arc-length methods for solving the nonlinear equilibrium equations, the
load-displacement constraint G is added to the system

H(q, λ) =

{
F (q, λ) = 0
G(q, λ) = 0

(24)

Solution of the nonlinear system is obtained by an incremental approach with the
elliptical constraint and the algorithm as follows:

1. Given a solution (qe, λe) to Eq. 24, define G(q, λ) = (q − qe)TW (q − qe) + c2(λ −
λe)

2 − s2, where W is a positive weighting matrix for the displacements, c is a load
scaling parameter, and s is the arc length.

2. Linearize in the intermediate state (qi, λi) as

H(q, λ) ≈
{
F (qi, λi) + ∂F

∂q
(qi, λi)(q − qi) + ∂F

∂λ
(qi, λi)(λ− λi) = 0

G(qi, λi) + ∂G
∂q

(qi, λi)(q − qi) + ∂G
∂λ

(qi, λi)(λ− λi) = 0
(25)

or{
F (qi, λi) +K(q − qi) + P (λ− λi) = 0
G(qi, λi) + 2(qi − qe)TW (q − qi) + 2c2(λi − λe)(λ− λi) = 0

where K = ∂F
∂q

(qi, λi) is a tangent to the equilibrium path at an equilibrium state.

3. Solve (q, λ) from Eq. 25. If |H(q, λ)| ≤ δ goto Step 4 else set (qi, λi) = (q, λ) and
goto Step 2.

4. Set (qe, λe) = (q, λ) and goto Step 1.

In ESAComp [1], the load controlled method is applied with W = 0 and load scaling
parameter c = 1.

FE-implementation

In the FE-implementation bilinear stabilized MITC plate elements [8, 10, 14] are used.
The shear energy term is modified as

1

2

t2

t2 + αh2

∫
Ω

γh(w, β) · A? · γh(w, β) dΩ (26)

where α > 0 is a numerical stabilization parameter, h is the mesh parameter, i.e., the
largest side length, and γh is the reduced shear strain [8, 14].
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For the bilinear quadrilateral element used in the simulation, the reduced shear is
defined locally such that

γh(w, β)|K =

[
aK + cKy
bK + dKx

]
(27)

for every element K. The parameters aK , bK , cK , and dK are determined from the
condition ∫

e

[γ(w, β)− γh(w, β)] · τ ds = 0 (28)

for every edge e of K. Here τ is the tangent to the edge. In the computation, the in-plane
forces N and the bending moments M are obtained consistently from the constitutive
equations. Shear forces are computed from

S(w, β) =
t2

t2 + αh2
A? · γh(w, β) (29)

The computation of the out-of-plane shear stress distribution and stiffness in ESAComp
is based on the theory developed at German Aerospace Center (DLR) [12]. In this work,
shear stabilization parameter α and drilling stabilization parameter C have fixed values
of 0.2. Those can be manually adjusted from model template files of ESAComp.

Examples

Selection of element mesh density

Thin-walled Carbon-Fiber-Reinforced Polymer (CFRP) cylindrical shells with radius-to-
thick-ness ratio R/t of 160-500 under different loading conditions shown in Figure 1 were
studied for structural stability. Based on this study, guidelines for the selection of the
element mesh density were set.

A set of problems presented in Table 1 was solved with ESAComp using different mesh
densities. The load types considered were axial compression, torsion, and bending. The
number of elements in the hoop direction Nh was set to vary from 40 to 240 while the
element aspect ratio was set to one.

Convergence studies were made and the results are presented for the axial load in
Figure 3 on top. Respectively, results for the torsion and bending cases are shown on
bottom of Figure 3. The reserve factor against buckling RF indicated on the vertical axis
has been normalized against the value obtained with 240 elements in the hoop direction.

A short summary for the problems are presented in Table 1. The deviation δ indicates
the difference between the ESAComp results with respect to the reference results at the
converged state using the linear buckling analysis.

As an outcome of this study it can be concluded that in axial load dominated buckling
160 elements are needed in the hoop direction to achieve reasonable accuracy, i.e., the
deviation from the converged result is less than 10 percent. For torsion and bending
dominated buckling, 120 elements is a sufficient number to guarantee the same accuracy
since in these problems buckling wave lengths are longer. It should be noted that in this
study cylinder diameter-to-length ratio D/L was equal or close to one.

Nonlinear analysis of a cylindrical structure with imperfection sensitivity study

A thin-walled axially compressed CFRP cylinder was studied using the large deformation
analysis with Reissner, Mindlin, and von Kármán type shell facet models. Different
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Nh

RF

Nh

RF

Figure 3. A mesh convergence study. Reserve Factor RF against buckling calculated for various
cylinder configurations (see Table 1) using different mesh densities. The mesh density is considered with
the number of elements in the hoop direction Nh. Nh was set to vary from 40 to 240 while the element
aspect ratio was set to one. RF indicated on the vertical axis has been normalized against the value
obtained with 240 elements in the hoop direction. The graph illustrates how coarser element meshes give
optimistic predictions for the load carrying capability in stability.
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Table 1. The deviation δ between the results computed with ESAComp [1] with respect to the reference
results [11, 13, 15, 18, 20] at the converged state using the linear buckling analysis. Load components
axial, torque and bending are illustrated in Figure 1. Geometrical parameters are diameter of the cylinder
D, length of the cylinder L, radius of the cylinder R, and thickness of the cylinder t.

Cylinder Load D/L R/t δ [%]

DLR [18] Z07 axial 1 500 +5

ECSS [20] C3 axial 1.1 100 +3

ETH [15] Z18 axial 1 200 +4

ETH [15] Z18 torque 1 200 +2

ETH [15] Z28 axial 1 200 +3

ETH [15] Z28 torque 1 200 +2

ETH [15] Z32 axial 1 200 +5

ETH [15] Z32 torque 1 200 +2

AERO [13] A axial 1.3 265 +1

NASA [11] A bending 1 160 −4

NASA [11] B bending 1 160 −1

NASA [11] C bending 1 160 −2

numbers of axial, circumferential and combined imperfection waves were used to represent
the initial shape of the structure. Three examples are shown at the bottom of Figure 4.
The horizontal axis of the chart corresponds to the number of axial half-waves and the
vertical axis to the number of circumferential waves. The amplitude of the imperfection
was 0.2 mm, which has been magnified by a factor of 100 for the visualization. The
reference application is the Z15 benchmark cylinder used in DESICOS project [13, 15, 18,
20].

The nominal load used in this sensitivity study corresponded to the SPLA design
buckling load of 17.99 kN. The results of the sensitivity study are presented in the bubble
chart of Figure 4. Color codes from red to blue and bubble sizes from small to large
indicate the increasing load factor with respect to the SPLA.

In SPLA a geometrical imperfection is created with a radial perturbation load P .
For the reference application the perturbation load P was as small as 3 N. Using the
ESAComp panel analysis, which is applicable to semi-cylinders shown in Figure 5, the
deformation level with P = 3 N was solved. The maximum deformation was slightly over
0.2 mm and therefore, the selected amplitude in the sensitivity study was 0.2 mm. The
radial perturbation force generates a local axial half-wave and oscillating circumferential
waves. If we assume that there are multiple equally spaced perturbation loads, the initial
imperfect shape can be generated with ESAComp, for example, by assuming that there
is a single axial half-wave and eight circumferential waves. Generally the study was made
with the imperfection amplitude of 0.2 mm. However, a single result was generated with
the imperfection amplitude of 2 mm. This is presented in the chart of Figure 5 by the
red bubble with a black border.

In ESAComp, the nonlinear equations are solved iteratively by Riks’ method with
the load-controlled incrementation scheme and Reissner, Mindlin, and von Kármán type
shell facet model. The number of sub-steps is defined through the analysis options. The
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Figure 4. Results of the sensitivity study.

Figure 5. Deformed shape of the semi-cylinder loaded with a single perturbation force P .
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Figure 6. The result tracker (left) and the deformed cylinder (right) for which the initial shape was
generated using the linear buckling analysis.

nonlinear analysis of ESAComp provides on-line monitoring. The result tracker indicates
how the maximum deflection of the structure develops as a function of the load increment
and thus gives a direct indication at which load level the structure starts to behave in a
nonlinear manner. The graph in Figure 6 is related to the cylinder for which the initial
shape has been obtained from the linear buckling analysis. The presented solution has
just converged with the design load. The deformation has been scaled by a factor of 100
for the visualization. A load factor of 1.02 was obtained for this configuration and this is
indicated in Figure 4 as ”Buckl. imp.”

Design-optimization of cylindrical composite structures

Generally optimization aims to the selection of the best, or a set of best suited designs,
with respect to one or more objectives and a set of constraints. The design-optimization of
cylindrical, layered composite structures for a launcher application is described in detailed
in reference [22]. The goal of the optimization was to minimize the weight of the cylinder
while meeting the constraints related to the stability and laminate strength. The project
was realized by combining ESAComp with a design optimization and process integration
software. Sandwich structures may provide the optimum solution in some applications.
Also, stiffened structures as shown in Figure 7 are widely used.

Conclusions

A set of problems for CFRP cylindrical shells presented in the literature has been solved
using a shell facet model and tools implemented in the ESAComp software for structural
stability analysis. In this work, the load types considered were axial compression, torsion,
and bending. The number of elements in the hoop direction was set to vary from 40 to 240
while the element aspect ratio was set to one. Convergence studies show that in axial load
dominated buckling, 160 elements are needed in the hoop direction to achieve reasonable
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Figure 7. Buckling of the cylinder with ring stiffeners (on top) and with axial stiffeners (on bottom).
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accuracy, i.e., the deviation from the converged result is less than 10 per cent. For torsion
and bending dominated buckling, 120 elements is a sufficient number to guarantee the
same accuracy since in these problems buckling wave lengths are longer. In this study,
the cylinder diameter-to-length ratio was equal or close to one.

In ESAComp, the nonlinear equations are solved iteratively by Riks’ method with
the load-controlled incrementation scheme. The number of sub-steps is defined through
the analysis options. The nonlinear analysis of ESAComp provides on-line monitoring.
The result tracker indicates how the maximum deflection of the structure develops as a
function of the load increment and thus gives a direct indication at which load level the
structure starts to behave in a nonlinear manner.

The ESAComp software provides user-friendly tools to introduce geometrical imper-
fections into the geometry. The shape of the imperfection can be generated with a linear
buckling analysis and scaled by a user-defined amplitude. For cylindrical shells the dis-
torted shape can be based on analytical formulas as well. ESAComp acts as an efficient
tool for studying the imperfection sensitivity through the alternation of the shape and
amplitude of the imperfection, and thus helps in finding a robust design in the preliminary
design phase.
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ling Simulation of Imperfect Cylindrical Composite Shells, Mechanics of Advanced
Materials and Structures, 18:115–124, 2011. doi:10.1080/15376494.2010.496063.

[22] Proc. of the 12th European Conference on Spacecraft Structures, Materials & Envi-
ronmental Testing, 20-23 March, 2012, Noordwijk, The Netherlands, ESA SP-691,
2012.

50

http://dx.doi.org/10.1016/0045-7825(93)90214-I
http://dx.doi.org/10.1016/0263-8223(95)00152-2
http://dx.doi.org/10.1002/(SICI)1097-0207(19970115)40:1%3C51::AID-NME49%3E3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-0207(19970115)40:1%3C51::AID-NME49%3E3.0.CO;2-3
http://dx.doi.org/10.1016/S1359-8368(00)00031-7
http://dx.doi.org/10.1007/s002110050478
http://dx.doi.org/10.1016/S0263-8223(01)00053-8
http://dx.doi.org/10.1016/S0263-8223(01)00053-8
http://dx.doi.org/10.1016/j.compstruc.2007.04.025
http://dx.doi.org/10.1080/15376494.2010.496063


[23] P. Kere, Design with Composites, Encyclopedia of Composites, pp. 725–737, Wiley
& Sons, Inc., 2012.

Harri Katajisto
Componeering Inc.
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