Slotless-Halbach Lightweight Electric Machines and Unconventional Multi Layer Winding

Md Sariful Islam
Graduate Student
Department of Electrical and Computer Engineering North Carolina State University
Raleigh, NC, USA

Presentation Outline

Introduction

- Motivation
- System Requirement for Drone Applications

Slotless-Halbach Lightweight Machine

- Halbach Magnetization
- Slotless-Halbach Performances
- Experimental Results

Unconventional Multi Layer Winding

- Conventional Multi Layer Winding
- Proposed Concept

Final Wye-Deta Winding

Motivation

Drone Delivery

Dubai air-taxi

Drone Delivery

- Power density \& efficiency improvement of electric motors-
- Flight time
- Fuel Efficiency

Research Objective

Developing an electric machine topology to maximize power density compared to a conventional PM topology

System Requirement

Drone System Requirement

- Total mass: 8 kg
- Flight time: 30 minutes
- Four Electrical Motors

$$
\begin{aligned}
& \text { Power Requirement } \\
& F_{\text {lift }}-W-F_{\text {drag-profile }}=m a \\
& P_{\text {lift }}=500 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Propulsive power } \\
& F_{\text {lift }}=W, \quad \text { Thrust }=F_{\text {drag-profile }} \\
& P_{\text {propulsive }}=300 \mathrm{~W} @ 5000 \mathrm{rpm}
\end{aligned}
$$

Electric Motor rating -

- 0.5 kW at $5,00 \mathrm{rpm}$
- Maximum speed: $10,000 \mathrm{rpm}$

Proposed Slotless-Halbach

Stator

- Thermal plastic teeth in the stator
- Teeth winding
- Negligible lamination to close the flux path

Rotor

- Non-magnetic rotor
- High number of Pole (14)
- Halbach magnetization

Halbach Magnetization

- Flux opposes in one side.
- Supports in other side.
- Magnet provides the flux path.
- Circumvent the need of rotor core.
- Ideal Halbach magnetization distribution is sinusoidally distributed.
- Higher segment number increases the air gap flux density.

- $2 \mathrm{~s} / \mathrm{per}$ pole magnet orientation changes by 90°.
- $3 \mathrm{~s} /$ per pole magnet orientation changes by .
- Magnetization for each segment,

$$
\theta_{m}=\left(1 \pm \frac{P}{2}\right) \theta_{n}
$$

Performance Analysis

- Large effective airgap requires higher electrical loading.
- Improves power density by 60%.
- Reduces the rotor inertia by 20%.
- Increases active volume density.
- Zero cogging, and negligible ripple.
- Negligible core and magnet loss.
- However, ac conductor loss needs to be minimized using thin wire.

Parameter	Slotless	Slotted
$O D(\mathrm{pu})$	1	1
$L(\mathrm{pu})$	1	1
Slot/pole	$12 / 14$	$12 / 14$
Speed (rpm)	5,000	5,000
Density $(\mathrm{kW} / \mathrm{kg})$	1.05	0.67
Core loss	3	21
DC conductor	33	13
Efficiency	93	93
Torque/lnertia $\left(\mathrm{kg}-\mathrm{m}^{2}\right)$	1300	1100

Slotless-Halbach is feasible to provide higher power density compared to the conventional machine.
M. S. Islam, I. Husain and R. Mikail, "Slotless lightweight motor for drone applications," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp. 5041-5048.
M. S. Islam, R. Mikail and I. Husain, "Slotless lightweight motor for aerial applications," IEEE Trans. on Industrial Application (In Review).

Prototyping and Test Results

(a)

(b)

Stator with winding
(c)

- PWM switching frequency of 80 kHz .
- Ultra low inductance requires WBG drives as enabling technology.

BEMF profile

Current

Conventional Teeth Winding

- Shorter end-turns, higher fill factor, compact
- High MMF harmonics $P_{\text {Core }} \uparrow, T_{A V G} \downarrow, P F_{I N} \downarrow$
- Lower $P_{I^{2} R-S t}$ but higher induced losses, $\eta \downarrow$

$$
M M F_{Y Y}=\sum_{v=1,-5,7}^{\infty} \frac{12 N I}{v \pi} \sin \left(\frac{v \pi}{12}\right)^{2} \sin (v \theta-\omega t-v \pi / 12)
$$

12s/10p

- $1^{\text {st }}(35 \%), 7^{\text {th }}(71 \%), 17^{\text {th, }}, 19^{\text {th }}$ are responsible for rotor loss, core saturation, PM eddy current loss.
- Problematic for ripple, and lower power factor.

Objective

- Simultaneous cancellation of $1^{\text {st }}$ (sub) and $7^{\text {th }}$ (super) harmonics

MMF spectrum

Proposed Winding

- Angular difference between adjacent coils are, $180-v \cdot \frac{2 \pi}{Q}$
- For a $12 / 10$ motor, shifting second coils by 30° can cancel sub-harmonics.
- The 30° shift can be achieved using a $Y-\Delta$ connection.
- Two coils are connected in $Y-\Delta$ to cancel sub-harmonics.
- Two sets $(W 1, W 2)$ of three phase $Y-\Delta$ windings are connected in series with a mechanical shift, $\theta_{s h}$.
- $Y-\Delta$ yields a current ratio of $\sqrt{3}$ between coil groups.
- To balance the MMF, the turn number of Δ coil is $\sqrt{3}$ of Y.
- Resultant stator will have double slots (24/10 compared to a 12/10 configuration).

First Wye-Delta Circuit Connection

Performance Comparison

- Proposed winding yields lower core loss.
- It reduces the core loss mostly from rotor and PM.
- The reduction in core loss is 15%.

- The cancellation of sub and super harmonics reduces the leakage reactance.
- It improves the power factor, 0.96 compared to 0.9 .
- However, the delta winding introduces third harmonic in delta current.
- The third harmonic in delta winding can increase the stator copper loss.
- Proper PM design and magnetization can reduce the third harmonic current in delta winding.

	Rated Performance Comparison			
Parameters	Conventional	Proposed	[4]	[9]
$T_{A V G}(\mathrm{Nm})$	12.95	13.10	13.43	12.75
TRipple (\%)	5.30	1.60	2.50	1.25
THD ${ }_{V_{L L}}(\%)$	4.60	1.10	2.70	1.63
$P_{\text {core }}$	4.35	3.71	4.22	3.89
$I^{2} R$	128.4	129.8	129.8	128.4
Power factor	0.90	0.96	0.89	0.95
Harmonic in Δ	0	1.6	1.52	0

Radial Force

- The proposed winding also improves the radial force of the machine.

Thank You

