WHITE PAPER J\ ALTAIR

I/O PROFILING TO IMPROVE DL_POLY
FOR MOLECULAR DYNAMICS SIMULATION

Liam McClean, Senior Software Engineer, Altair / Aidan Chalk, HPC Engineer, STFC Hartree Centre / March 26, 2021

Supporting Research and Industry in the UK

We worked with the team at the Science and Technology Facilities Council (STFC) Hartree Centre to assess and improve the
performance of a number of commonly used high-performance computing (HPC) applications. The Hartree Centre provides some of the
most advanced HPC, data, and Al technologies in the world to support UK research and industry.

Recently, the team at the Hartree Centre used Altair Breeze™ to profile and improve DL_POLY, a general-purpose classical molecular
dynamics (MD) simulation software developed at STFC’s Daresbury Laboratory. This paper presents the initial findings and
performance improvements that have been submitted to the DL_POLY development repository.

By looking at the 1/0 patterns using Breeze the Hartree Centre was able to reduce simulation software run time by at least 8%
with a relatively small investment of time.

About DL_POLY

DL_POLY provides scalable performance from a single processor workstation to a high-performance parallel computer, allowing the
dynamic simulation of very large systems of atoms and molecules. It can be compiled as a serial application code, using only a Fortran
90 compiler, or as a parallel application code, provided an MPI2 instrumentation is available on the parallel machine.

About Breeze

Detailed dependency analysis and I/O profiling with Breeze makes every engineer an I/O expert. Breeze users can quickly solve
software deployment problems and resolve file and network dependencies. With detailed data for storage exports and summary reports
for sharing, Breeze identifies good and bad I/O for easy wins and profiles application file I/O to ensure files are stored in the right place.

The Initial Trace

The team at the Hartree Centre performed an initial trace with Breeze for a slightly modified version of the Sodium Chloride test case
provided with DL_POLY_4. They doubled the size of the example in each dimension using the nfold 2 2 2 option, then forced DL_POLY
to use the sorted mpiio writing scheme, with 1 writer per node (16 total writing ranks).

During the profile, the team also simulated a high-1/O run used by some of the DL_POLY user base by adding traj 0 1 2 to the
CONTROL file, and they ran the simulation for 1,250 steps.

Since the team ran the application for 1,250 steps, they expected each node to only open the HISTORY file 1,251 times, once for the
initial setup then once per timestep. However, the MPI tab in Breeze showed that 40,032 calls were made to MPI_Open() for the
HISTORY file on each node. Each node is shown as a separate child trace. This took more than 17min 45s on the head node, which is

A ALTAIR © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com /1

WHITE PAPER J\ ALTAIR

a lot of wait time on a run that took only 14 mins. The time is split between 32 ranks, so each rank had on average 33s of wait time on
those opens. Other nodes saw similar wait times.

Mount Paint b Location » MPI Open 4AMPI... » MPIStat P MPISync b
Mount Point Filename | # Call Total latency (us) :I Max latency (ps) # Failure #Cal | #call # Call
! REVCON 416 105 595ms 174ps 31ms 90ps 0 416 0 0
r HISTORY 40,032 17min 455 97ms 96... 133ms 523us 0 40,032 0 0
! CONFIG 32 35s 414ms 43ps 15 106ms 744ps 0 32 0 0

Breeze Screenshot: The HISTORY File Was Opened More Than 40K Times With an I/O Wait Time of Over 17 Minutes

Making Improvements

DL_POLY already uses a separate MPl communicator to perform MPI_write() operations but does not use this communicator for
opening the files. This is clearly seen in the screenshot below where Breeze shows that all ranks open the HISTORY file, but only one
writes to it.

*Program Info... ;] *Program /0 ... | [| *Program Files | *Program MPI| = O

& Node 22 ‘ED Events

~ 4=MPI Opened by
,’IustrelscafeHp\ke!locallHTn1 812/axc01/axc67-axco1/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57699
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57700
,’IustrelscafeHp\keflocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57701
,’IustreiscafeHp\keilocallHTO1 812/axc01/axc67-axc01/dl-poly/bulld_mpich/bin/DLPOLY.Z - pid_57702
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57703
llustrelscafeHp\kellocaliHTD1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57704
llustrelscafeHp\ke/locallHTO1 812/axc01/axc67-axc01/dl-pely/build_mpich/bin/DLPOLY.Z - pid_57705
,’IustrelscafeHp\ke!locallHTn1 812/axc01/axc67-axco1/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57706
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57707
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57708
llustrelscafeHp\kellocaliHTD1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_S7709
llustrelscafeHp\ke/locallHTO1 812/axc01/axc67-axc01/dl-pely/build_mpich/bin/DLPOLY.Z - pid_57710
,’IustrelscafeHp\ke!locallHTn1 812/axc01/axc67-axco1/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57711
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57712
,’IustrelscafeHp\keflocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57713
,’IustreiscafeHp\keilocallHTO1 812/axc01/axc67-axc01/dl-poly/buld_mpich/bin/DLPOLY.Z - pid_57714
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57715
llustrelscafeHp\kellocaliHTD1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57716
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57717
,’IustrelscafeHp\keflocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57718
,’IustreiscafeHp\keilocallHTO1 812/axc01/axc67-axc01/dl-poly/bulld_mpich/bin/DLPOLY.Z - pid_57719
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57720
llustrelscafeHp\kellocaliHTD1 812/axc01/axce7-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57721
llustrelscafeHp\ke/locallHTO1 812/axc01/axc67-axc01/dl-pely/build_mpich/bin/DLPOLY.Z - pid_57722
,’IustrelscafeHp\ke!locallHTn1 812/axc01/axc67-axco1/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57723
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57724
,’IustrelscafeHp\keflocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57725
llustrelscafeHp\kellocaliHTD1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57726
llustrelscafeHp\ke/locallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57727
,’IustrelscafeHp\ke!locallHTn1 812/axc01/axc67-axco1/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57728
,’IustrelscafeHp\kellocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57729
,’IustrelscafeHp\keflocallHTO1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57730
> #=MPI WriteFileInfo by

= MPI Written to

llustrelscafeHp\kellocaliHTD1 812/axc01/axc67-axc01/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57699

Breeze Screenshot: The HISTORY File Was Opened by Every MPI Rank, but Only One Rank Wrote to It

A ALTAIR © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com /2

WHITE PAPER

J\ ALTAIR

Checking each rank to verify this behavior shows that most ranks simply open the file, modify the metadata, and close it once for each
time step.

File Trace Views Help

100 % Selectrun: | 3 - hydra_pmi_proxy in /ell. » child traces:

, search | B 10 summary |[© Timeline 2

~ [Elnustresscafelipike/local/apps/gee? /mpich/3.2.1 /binfhydra_pmi_proxy - pi

(® puration| [] Files | =k Directories | 1= Network | ## MPI| 1| Profiling Data = B | & *Node |& Events X\%*Frugram Info. *Program /O ... | [] *Program Files | #F Program MP1, = O
ops am 12m
| Austrefscafellpike/local/HT 01812/axc01/axc67-axc0 1/dl-poly/build_mpich/bin/DLPOLY.Z - pid_57702
Jous Search
1 HISTORY Find Next

Austre/scafellpike/local/HT018 oly/build_mpid
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic

[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1/dI-poly/build_rmpic
[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1/dI-poly/build_rmpic
[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1/dI-poly/build_rmpic
[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1 /dI-poly/build_rmpic
[Elfustre/scafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[Elfustre/scafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[Elfustre/scafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[El fustrerscafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[El Austre/scafellpike/local HTO1812/axc01/axc67-axc0 1 /dl-poly/build_mpic
[El Austre/scafellpike/local HTO1812/axc01/axc67-axc0 1 /dl-poly/build_mpic
[El Austre/scafellpike/local HTO1812/axc01/axc67-axc0 1 /dl-poly/build_mpic
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic
[Elustrescafellpike/local/HT01812/axc01/axc6 7-axc0 1/dl-poly/build_mpic
[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1/dI-poly/build_rmpic
[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1/dI-poly/build_rmpic
[Elustre fscafelipike/local/HT01812/axc01/axc6 7-axc0 1/dI-poly/build_rmpic
[Ellustre fscafellpike/local/HT01812/a%c01/axc6 7-axc0 1 /dl-poly/build_rmpic
[Elfustre/scafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[Elfustre/scafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[Elfustre/scafellpike/local HTO1812/axc01/axc67-axco 1 /dl-poly/build_mpic
[El Austre/scafellpike/local HTO1812/axc01/axc67-axc0 1 /dl-poly/build_mpic

Flnnn mmo A nememeen e o e

11:01:00.404
11:01:00.531
11:01:00.531
11:01:01.057
11 01.175
11 01.175
1"
1
1
11:01:02.226
11:01:02.391
11:01:02.392
11:01:02.823
11:01:02.914
11:01:02.915

9] Filter write/read/seek events

5min 135 7ms82... | 218us
5min 135134ms...
5min 135135ms... | 401ps

MPI Close HISTORY

69ms217us | MP1Open HISTORY

MPI WriteFileInfo | HISTORY

Smin 135660ms... | 12ms 196us | MPI Close HISTORY
Smin 135778ms .. | 26ms591us MPI Open HISTORY
| Smin 135 779ms... | 611ps | MPI WriteFileInfo | HISTORY
S5min 145252ms... | 1ms447us MPI Close HISTORY
5min 14s 335ms 22ms 481ps | MPIOpen HISTORY

5min 145335ms... | 445ps
5min 145 829ms
5min 145 994ms
5min 145995ms... | 723ps
5min 155 427ms
5min 155518ms
5min 155518ms... | 447us

MPI WriteFileInfo | HISTORY

11ms 281ps | MPI Close HISTORY
22ms 236ps | MP1Open HISTORY

MPI WriteFileInfo | HISTORY

9ms594ps | MPIClose HISTORY
30ms 399us | MPIOpen HISTORY

MPI WriteFileInfo | HISTORY

[E) All Events
Accept

Bl close
Elconnect
BElExeced by
Bl Listen
ElLoad
BlmpPIClose
EIMPI Open

ops 3m

6m om 12m

Smin 135 513ms 568ps

Timeline: ST Fles: (U Directories: ST Node: ST Events: SR

Breeze Screenshot: Most MPI Ranks Opened the HISTORY File, Modified the Metadata, Then Closed It

The Hartree Centre team modified the io, trajectory, and configuration modules in DL_POLY to enable only ranks that perform

MPI_write() operations to perform the MPI_Open() calls.

Retracing this in Breeze showed the expected improved results:

Filename
HISTORY
CONFIG
REVCOM

Location

b MPl Open 4
Call :I
1251

3z

13

MP| Filesystem change

Call

1251
32
13

Breeze Screenshot: Improved I/O Patterns Showing the Expected Number of Open Calls

Even Better Results in Scaling

Furthermore, when run for 5,000 steps instead of 1,250 on 512 ranks (16 nodes), the run time of this example went from 3632.781s to
3347.844s, averaged over three runs. This is a performance improvement of around 8%. The example showed similar performance
gains of 5-6% when run on 4 or 8 nodes respectively. The performance improvements are likely to be greater when running at larger
scales.

)\ ALTAIR © Altair Engineering, Inc. All Rights Reserved. / Nasdag: ALTR / altair.com

WHITE PAPER J\ ALTAIR

Runtime of main branch vs optimised branch

4000 9%

3500

3000

2500

2000 o=

1500

1000

B
0

4 nodes, 1250 steps 8 nodes, 2500 steps 16 nodes, 5000 steps

Runtimeins

N Main branch M Optimised branch ==ges=Performance improvement

Performance Improvements Are More Pronounced as the Application Scales

These changes have been submitted to the DL_POLY development repository, and the team expects to see the improvements as part
of the next major release.

Further Improvement

Although unlikely to lead to such impressive gains, there are potentially some small wins to be had in optimizing the writes to the /netfs
file system. Within the 14min run time there was just over 9s of small writes to an OUTPUT file on that mount point. With only 32 writes
performed and few bytes written each time, there is clearly scope for moving that I/O into a separate thread to shave off another 9s
from the application run time.

)\ ALTAIR © Altair Engineering, Inc. All Rights Reserved. / Nasdag: ALTR / altair.com / 4

/\ ALTAIR

WHITE PAPER
=, search | B 170 summary 52 | [Timeline | (® Duration | [] Files | =4 Directories | T= Network | ## MPI| 7| Profiling Data =
Item Duration Contribution Operation count Total size Program Run Time: 14m 65 568ms 135ps
e .Bad /0 95 236ms 531us 23.2% 2,014 7.49MB
& small reads and writes 95 236ms 437us
Small writes 95 233ms 91us 33 4.75kB
Small reads 3ms 346ps - 1,947 7.49MB
Opens and Closes on unused files 61ps - 1 n/a
Zero byte /O operations 33ps -- 33 n/a
Stats on unused files - - n/a
Failed filesystem L/O - - n/a
Badkward seeks - -
Failed network I/O - - n/a
e Mediurm I/O 15 441ms 748us 3.6% 130 5.94GB
Opens and Closes on seldom used files 15 267ms 54ps 3.2% 32 n/a
Stats on used files 174ms 551ps 0.49% 64 n/a
> Large reads and writes 138ps -- 32 5.94GB
Delete operations 5ps -- 1 n/a
Forward seeks = 1 190.07MB
Successful Sync operations -- -- n/a
e .Good /O 295 64ms 116ps 73.2% 3,959,747 44 73GB
Successful network /O 29s 63ms 582ps 73.20% 3,959,683 44,73GB
Opens and Closes on frequently used files 534ps -- 64 n/a

Mediurm sized reads and writes

Percentage Contribution ~ Tirne Contribution | Executable full path

491ms 697ps | /lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich

PID | Executable

DLPOLY.Z

57730 DLPOLY.Z 1.0 478ms 149pus flustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpict

57702 DLPOLY.Z 1.0 465ms 753ps flustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpick

57727 DLPOLY.Z 0.9 452ms 966ps flustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpick

57717 DLPOLY.Z 0.9 440ms 113ps fustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpict

57699 DLPOLY.Z 0.9 427ms 136ps flustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpick

57707 DLPOLY.Z 0.8 414ms 531ps fustre/scafellpike/local/HT01812/axc01/axc6 7-axc01/dl-poly/build_mpict
Timeline: Files: Directories: Node: Events:

Breeze Screenshot: Small Read and Write Operations Highlighted in Breeze /0 Summary

Conclusion

This collaborative work with the HPC experts at the Hartree Centre demonstrates how I/O profiling can reveal easy wins with minimal
effort. Improving run time and overall performance doesn’t have to involve a complete rewrite of an application; often, only a small
change is needed. Knowing where to look is the clever part.

Acknowledgements

This work was funded by a Bridging for Innovators (B4l1) grant. B4l offers businesses unique access to a suite of high-tech scientific
facilities and knowledge to fast-track solutions to industrial challenges.

)\ ALTAIR © Altair Engineering, Inc. All Rights Reserved. / Nasdag: ALTR / altair.com

	i/o profiling to improve dl_poly
	for molecular dynamics simulation
	Liam McClean, Senior Software Engineer, Altair / Aidan Chalk, HPC Engineer, STFC Hartree Centre / March 26, 2021
	Supporting Research and Industry in the UK
	About DL_POLY
	About Breeze
	Detailed dependency analysis and I/O profiling with Breeze makes every engineer an I/O expert. Breeze users can quickly solve software deployment problems and resolve file and network dependencies. With detailed data for storage exports and summary re...
	The Initial Trace
	Making Improvements
	Even Better Results in Scaling
	Further Improvement
	Conclusion
	This collaborative work with the HPC experts at the Hartree Centre demonstrates how I/O profiling can reveal easy wins with minimal effort. Improving run time and overall performance doesn’t have to involve a complete rewrite of an application; often,...
	Acknowledgements

