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ABSTRACT: This paper describes the method for transverse shear 
analysis to be applied in the composites design program ESAComp. The 
correlation of the method to the formulations used in the commercial 
finite element programs is presented and the results from the selected 
method are compared to the exact elasticity results. The results show 
good agreement with the exact solutions for cross-ply and unsymmetric 
angle-ply laminates. Symmetric angle-ply laminates create bending-
twisting coupling that the theory cannot accurately model. 

 
1 – INTRODUCTION 
 
Composite laminates have weak resistance to transverse shear compared to traditional materials 
because all reinforcements are normally in the plane of the laminate. Due to the relatively small 
transverse shear stiffness, the effect of shear deformation becomes significant in structural 
problems. In addition, transverse shear stresses can cause delamination failure. 
In order to account for the shear deformation, the shear stiffness of the laminate has to be 
determined. The calculation of shear stresses and stiffnesses is much more complicated for 
composite laminates than for metals because of the layered structure formed from orthotropic plies. 
In contrast to the three material properties of isotropic metals, orthotropic layers have nine material 
properties and the material properties may be different in each layer. Since the exact calculation is 
not possible in a general case, different approximative shear deformation theories have been 
developed. These theories and their applicability to the composites design program ESAComp1 
were investigated through a literature survey2. 
ESAComp uses Classical Laminate Theory (CLT) in laminate analyses and First order Shear 
Deformation Theory (FSDT) in plate and beam analyses.3 The laminate lay-ups and stiffness 
properties can be exported from ESAComp to the FE-programs. After the analysis is completed, the 
element resultant stresses can be imported from the FE-programs back to ESAComp for further 
analyses. The following programs are supported: ABAQUS, ANSYS, I-DEAS, MSC.Nastran and 
NISA. In order to assure the validity of the results, the compatibility of the selected method to 
formulations in different FE-programs need to be checked. 
 
 1.1 Background 
 
Shear deformation theories typically rely on a displacement field approximation. Theories related to 
a linear in-plane displacement field across the laminate thickness are called First Order Shear 
Deformation Theories (FSDT). According to the strain-displacement relation, linear displacement 
field is analogous to constant transverse shear strains across the laminate thickness. This assumption 
results in a discontinuous, piecewise constant shear stress field if the shear stresses are calculated 
from the shear strains. This is unrealistic because the transverse shear stress field should be 
continuous through the thickness and vanish at the laminate surfaces. 



 

Higher order theories i.e. theories relying on a displacement function higher than first order, have 
been developed to better describe the internal stress state of the laminate. They can provide a shear 
stress field that vanishes at the laminate surfaces, but they cannot provide a continuous shear stress 
field across the laminate thickness.  
Both of these conditions can be satisfied by assuming a displacement field separately for each layer. 
These layerwise theories can provide a powerful tool for transverse shear stress calculations, but 
they are also computationally challenging and their finite element applications require complicated 
element formulation.4 

In practice, displacement fields are significantly curved only when the laminate is very thick. As the 
thickness of the laminate is decreased, the curved shape gets flatter and the displacement field is 
thus closer to the FSDT assumption. When the thickness is further decreased, the effect of shear 
becomes negligible and the displacement field simplifies to the form assumed in the Classical Plate 
Theory. 
 
2 –TRANSVERSE SHEAR CALCULATION IN ESACOMP 
 
ESAComp laminate analysis is a point analysis, i.e. the analysis is done on a point in the structure 
with no information about the adjacent points. Basic results given by the analysis are in-plane, 
bending and shear stiffnesses of a laminate. In the laminate load response analysis the user can 
specify mechanical, thermal and moisture loads and ESAComp calculates the layer stresses/strains 
and margins to failure. ESAComp also uses the laminate point analysis as a part of its analysis 
capabilities for structural elements, such as plates, and for FE postprocessing. 
The method for transverse shear chosen for ESAComp needs to provide a calculation method for 
transverse shear stiffness matrix and for transverse shear stresses. Due to the nature of the point 
analyses, the shear stiffnesses need to be calculated as a material property independent on the 
loading conditions and the transverse shear stresses have to be calculated straight from the shear 
forces.  
A method based on the FSDT was chosen to be applied. The FSDT provides calculation methods 
for transverse shear stiffness matrix and if the transverse shear stresses are calculated from the 
equilibrium equations and not from the shear strains, the results are quite accurate. Higher order 
theories cannot be applied because the method needs to be compatible with the FSDT formulations 
typically used in FE analyses of shell structures. Additionally, a point analysis does not provide 
enough information for higher order theory applications. The plate analysis of ESAComp would 
provide this information but in light of consistency the same method was applied in both plate and 
point analysis. 
 
 2.1 Transverse shear stress calculation 
 
The method applied was developed at DLR in Braunschweig. A detailed description of the method 
can be found in the references5. Only the fundamental assumptions and the formulations are 
presented here.  
The shear stresses are obtained by integrating the in-plane stress derivatives with respect to the 
thickness coordinate (Equation 1.). The theory makes an assumption that the in-plane derivatives of 
the in-plane forces are zero and that the derivatives Mx,x and My,y represent the shear forces Qx and 
Qy, respectively. All other moment derivatives are assumed to be zero (Equation 2.).  
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Equations for the shear stresses take the form: 
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The components Fij are second order functions of the thickness coordinate z provided by the 3 x 3 
matrix F(z): 
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where [b] and [d] are the compliance matrices for coupling and bending, respectively. Q (k) is the 
layer stiffness matrix in the global coordinate system. 
This theory uses the three-termed equilibrium equations. Some theories leave out the in-plane shear 
component. This approach is equivalent to Equation 3 with F32=F31=0. 
 
 2.2 Shear stiffness calculation 
 
Currently, the shear stiffnesses in ESAComp are calculated using shear correction factors6. The 
shear correction factors are calculated using the principle of strain energy with an assumption that 
the laminate has symmetric and balanced lay-up. A more precise calculation with no restrictions on 
the laminate lay-up will be implemented. The calculation of improved shear stiffnesses is based on 
Reference 7.  
The strain energy in matrix terms has two definitions: 
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where {Q} is the shear force vector and [K] is the shear stiffness matrix. 
Substituting the shear stresses presented in the previous chapter to Equation 5 and setting it equal to 
Equation 6 yields the improved laminate shear stiffnesses K: 
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The improved shear stiffnesses account for the actual shear stress field of the laminate and therefore 
do not need further correction factors. 



 

 
3 – COMPARISON WITH THE EXACT ELASTICITY SOLUTIONS 

 
The results based on the theory presented in the previous chapter were compared to the exact 
elasticity solutions by Pagano8,9. The exact elasticity solutions are derived for cylindrical bending 
under a sinusoidal load as shown in Figure 2. The transverse shear stress fields are plotted at the 
laminate edge (x=0). 

q = q0 sin (πx/a) 
 

Figure 2 - Cylindrical bending under sinusoidal load 
 

Three simple laminates were examined: cross-ply 0/90/0, unsymmetric angle-ply 15/-15 and 
symmetric angle-ply 30/-30/-30/30.  
The shear force vectors that are given as an input to the calculated field are derived from the plate 
equations of the Classical Plate Theory (CPT)10. The shear forces for the stress calculation become: 
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were K1 is defined: 
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Figure 3a shows the shear stress field of the cross-ply laminate with a/h-ratio of four. The exact 
solution8 for the shear stress is presented by the dashed line and the calculated result is the solid 
line. The calculated result shows a shear stress field that is simpler than the exact solution but as the 
dimensions of the plate are increased, the approximated stress field approaches the exact solution as 
can be seen in Figure 3b. In this case the shape of the shear stress field depends also on the laminate 
thickness.  
In general, the theories relying on a continuous displacement function across the entire thickness of 
the laminate cannot estimate the exact shape of the stress field for thick cross-ply laminates. It has 
also been shown that the higher order theories provide a shear stress field that is different from the 
exact solution even with high a/h-ratios.11 For this case, the results from the selected theory 
approaches the exact solution with decreasing thickness. The shear stress field of the thick cross-ply 
laminate can only be modeled with layerwise theories or the zig-zag theory. The zig-zag theory12 by 
DiSciuva says that the displacement field across the thickness is piecewise linear. The laminate 
curvature is defined separately for each layer and it additionally depends on the ratio of the shear 
stiffness properties of adjacent layers. For cross-ply laminates with unidirectional plies this 
parameter is at its maximum and thus generates a shear stress field that cannot be modeled with a 
linear displacement field. 



 

Figure 4 shows the shear stress field of an unsymmetric angle-ply laminate under the cylindrical 
bending. The results are additionally divided by the a/h-ratio, allowing the results with different 
a/h-ratios to be shown in the same picture. The solid line represents the calculated stress field and 
the dashed lines provide the exact elasticity results9. It can be seen that the calculated results are 
very close to the exact solution with all a/h-ratios. 
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Figure 3 - Shear stress for [0/90/0] -laminate with a/h-ratio a) 4 and b) 10 

 

( )
0

,0
qh

a
zxz

xz
⋅

=
ττ  

  
Figure 4 - Shear stress τxz/(a/h) for [15/-15] –laminate 
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Figure 5 - Shear stress a) τxz/(q0 a/h)  b) τyz/(q0 a/h)  for symmetric [30/-30/-30/30] –laminate 



 

 
The symmetric angle-ply laminates generate stresses in both transverse planes under one-
dimensional cylindrical bending. This is due to the fact that the symmetric angle-ply laminates have 
nonzero bending stiffness components D16 and D26 (See Equation 9.). These stiffness terms 
represent the bending-twisting coupling, which means that the laminate twists as it is bent. 
The shear stress fields for the symmetric 30/-30/-30/30 –laminate are shown in Figure 5. The 
calculated results are presented with solid line and the exact elasticity results9 with various a/h-
ratios are presented with dashed lines. The thick dashed line is the shear stress field that the exact 
elasticity solution approaches when the a/h-ratio is further increased. It can be seen that the 
calculated results for τxz and τyz deviate from the exact result even with high a/h-ratios. This is 
because the simplification about the moment derivatives does not hold for the symmetric angle-ply 
laminates as well as for crossply and unsymmetric angle-ply laminates. In this case the derivatives 
My,x and Mxy,x have nonzero values. The non-zero moment derivatives for the symmetric angle-ply 
laminate in the cylindrical bending (for x=0) according to the Classical Plate Theory are: 
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π
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If these moment derivatives are used with the DLR method, the results for shear stresses will align 
with the thick dashed line in Figure 5.  
 
4 – FE – FORMULATIONS 
 
The FE-formulations of the shell elements supported by ESAComp FE-postprocessing were 
investigated for the transverse shear. These elements include: 

- S3R, S4R and S8R for ABAQUS13 
- SHELL91 and SHELL99 for ANSYS14 (also SHELL181 in ESAComp 2.1)  
- Thin shells for I-DEAS15 
- DQUAD4 and CTRIA3 for MSC.Nastran16 

It was discovered that these software, excluding ANSYS, use a symbolic equation similar to 
Equation 3 to calculate the transverse shear stresses. The formulations vary depending on the 
software but they all use the simplified form of equilibrium equations which ignore the in-plane 
shear term: 
 

 FE-formulation Equilibrium equation  
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The shear stiffnesses are calculated from the shear stress field approximations by using strain 
energy principle. The shear stiffness formulations also differ depending on the software. In general 
they are simplified versions from the DLR version (Equation 7.) 



 

ANSYS, on the other hand, does not print out the shear stiffnesses for laminates. ANSYS uses the 
incremental form of the 3D equilibrium equations for the shear stress calculations: 
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The ANSYS shell elements SHELL91 and SHELL99 have four integration points, where the in-
plane stresses are computed. The variation of the in-plane stresses, ∆σxy and ∆τxy, are used in 
Equation 12. The terms ∆x and ∆y are the distances between the integration points and ∆z is the 
thickness of the layer. These stresses are called interlaminar shear stresses in ANSYS and they are 
always given in the layer interfaces. ANSYS also gives stresses called transverse shear stresses that 
can differ from interlaminar stresses. Transverse shear stresses are calculated from the stress-strain 
relation and corrected by a second order function to satisfy the free surface boundary conditions. 
The interlaminar shear stresses are more accurate for most applications.14 

 
5 –COMPARISON WITH THE FE-RESULTS 
 
Numerical comparisons were made with the FE-software and DLR formulation. The purpose of the 
comparisons was not to validate the calculation method but to compare the results of these various 
formulations. The aforementioned elements were used and a simple loading corresponding to a unit 
shear force was tested. The ply properties used in calculations were: 
 
E1 = 155GPa E2 = 8.5GPa G12=G13=5.5GPa G23 = 3.4GPa ν12 = 0.3 t = 1mm 

  
Three laminates were tested: 

- three-layer symmetric cross-ply 0/90/0 
- four-layer symmetric angle-ply 30/-30/-30/30 
- two-layer unsymmetric angle-ply 15/-15 

 
The loading condition corresponding to a unit force (Qx = 1N) was constructed in the Laminate task 
in I-DEAS. In ABAQUS a model consisting of one element was created. One side was clamped and 
three sides were free and a line load 1N/m was applied on the edge opposite to the clamped side. A 
one-element mesh is acceptable in this case because according to the formulations the shear stresses 
only depend on the shear forces. The same loading was used in ANSYS as in ABAQUS but a finer 
mesh was used. A one-element mesh would result in erroneous shear stresses in ANSYS because 
ANSYS uses displacements when calculating shear stresses. The results were evaluated in the 
middle of the plate and for the symmetric angle-ply laminate the results were additionally scaled to 
correspond to a unit force. 
The shear stiffnesses and the shear stress fields are presented in Figure 6. The ANSYS result from 
the stress-strain relations is noted as ANSYS (1) and ANSYS (2) is the result from the incremental 
form of the equilibrium equations.  



 

 
 
Shear stress τxz corresponding to a unit shear force (Qx = 1N) 
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Figure 6 – Shear stress fields and shear stiffnesses provided by the FE-software and DLR 

formulation 
 
In case of cross-ply laminate, the shear stress fields for all programs are aligned and the shear 
stiffnesses are equal. The stress-strain relation, ANSYS(1), has different results in the interface of 
two layers depending on which layer is used for the results but the more accurate ANSYS (2) is 
exactly aligned with the DLR result and with the results from other FE-software. 
In case of angle-ply laminates, the results vary depending on the formulation. ABAQUS result for 
symmetric angle-ply laminate is exactly aligned with the DLR result but the ABAQUS result for the 
unsymmetric angle-ply laminate differs from all other formulations. This unusually high shear 
stress field could not be explained by the theoretical background.  
The ANSYS (2) equilibrium result agrees with the DLR result for the cross-ply and the 
unsymmetric angle-ply laminate but for the symmetric angle-ply laminate the ANSYS (2) result is 
closer to the I-DEAS result. On the other hand, I-DEAS gives parabolic distribution for all cases, 
which is not true for the unsymmetric angle-ply laminate. 



 

 
6 – SUMMARY AND CONCLUSIONS 
 
The method to be applied in ESAComp for transverse shear analyses of laminates is based on the 
three-termed equilibrium equations and the strain energy principle. The results from the selected 
method were compared to the exact elasticity solutions and the FE-results in case of one-
dimensional bending.  
The accuracy of the method was good for cross-ply laminates with moderate a/h-ratios and for 
unsymmetric angle-ply laminates with all a/h-ratios. For symmetric angle-ply laminates, the shape 
of the shear stress field did not match with the exact elasticity solution even with high a/h-ratios. 
This is due to the non-zero moment derivatives that are assumed to be zero in the theory. The 
derivatives are dependent on the coupling terms of the stiffness matrix, which decrease when the 
number of layers is increased. It can thus be assumed that the accuracy of the method increases as 
the number of layers is increased. 
The FE-formulations are based on a similar approach where the shear stresses are calculated from 
the shear forces, except for ANSYS. ANSYS uses the incremental form of equilibrium equations 
and takes advantage of the calculated in-plane stresses in the four integration points of the element. 
The ANSYS results were closest to the exact solutions for the investigated three laminate lay-ups. 
ABAQUS gave the same results than the method to be applied in ESAComp except for the 
unsymmetric angle-ply laminate for which ABAQUS gave surprisingly high shear stresses and low 
shear stiffnesses that cannot be realistic. I-DEAS formulation is the most simplified but it was 
closest to the ANSYS result for the symmetric angle-ply laminate.  
It can be concluded that the method can be used in FE-postprocessing because the formulations of 
the FE-programs are similar. In FE-programs the shear stresses are also calculated from the shear 
forces. When the shear forces are imported to ESAComp for postprocessing, the accuracy of the 
final result will depend on the accuracy of the imported shear force value. Since the shear 
stiffnesses have variation among the software, it can be expected that the imported shear forces will 
differ depending on the software. In ANSYS the results from the incremental form of the 
equilibrium equations can be more accurate than the results from the selected method because the 
incremental form also uses the data from adjacent points.  
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