
WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 1

UNDERSTANDING FAIRSHARE USAGE FOR
ALTAIR PBS® PROFESSIONAL®
Joe Miller III – Technical Support Engineer, Altair / November 17, 2020

Introduction to PBS Professional
PBS Professional is a fast, powerful workload manager designed to improve productivity, optimize utilization and efficiency,
and simplify administration for HPC clusters, clouds, and supercomputers. It automates job scheduling, management,
monitoring, and reporting, and it's the trusted solution for complex Top500 systems and smaller clusters.

Introduction to Fairshare
Fairshare is a PBS Professional scheduling tool designed to share a cluster’s limited resources according to history of cluster usage
and the entities’ allocated percentage. Fairshare is the most direct option to grant a percentage of shared resources on the cluster to
users, projects, or groups.

Scope
This white paper covers how PBS Professional collects and manages fairshare usage. With this document, you should be able to walk
through each logical step of fairshare, understanding each number from pbsfs output. It also covers how you may manually alter each
entity’s usage data.

Some knowledge of fairshare is required:

• Setup

• Terminology

• Limitations and caveats with other PBS scheduling tools

• Tree structure

Please review Basic Fairshare for Altair PBS Professional and Fairshare Management for Altair PBS Professional if you are missing
any of the points above.

Challenges
Fairshare’s recorded usage, when installed per recommendations, is not an exact measurement of actual usage; comparing fairshare
usage with finished job usage will not likely report the same values.

While fairshare is completely precise in its calculations, it does sacrifice a small amount of accuracy for a large gain in cluster efficiency.
The actual steps of collection and other nuances are not written out in the Altair PBS Professional Administrator’s Guide.

Output from multiple sources is needed to understand how fairshare processes a most deserving entity. For brevity, some output of
pbsfs commands are not fully labeled. It may take some time to be comfortable with the use of the data.

Usage Overview
The scheduler parameter fairshare_usage_res defines the formula applied to accrue usage on entities for running jobs.

The usage file in $PBS_HOME/sched_priv is the fairshare usage database. It is updated and read during the beginning of each sched
cycle. The most deserving entity is recalculated throughout the sched cycle.

The pbsfs command is how you interact with the usage database:

• Display all fairshare tree and usage database: pbsfs

• Display current entity usage values among tree: pbsfs -g <entity name>

• Set entity usage: pbsfs -s <entity name> <amount>

https://www.altair.com/resource/basic-fairshare-for-altair-pbs-professional
https://www.altair.com/resource/fairshare-management-for-altair-pbs-professional
https://www.altair.com/pbs-works-documentation/

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 2

• Compare entities, displaying most deserving: pbsfs -c <entity name1> <entity name2>

• Clear unknown usage: pbsfs -e

• Forcibly decay usage: pbsfs -d

You can increase the reported usage accuracy by adjusting the MoM poll cycle and/or default scheduler iteration, depending on cluster
use.

Configurations Influencing Fairshare Usage
The following configuration parameters influence fairshare usage. All other fairshare settings have been discussed in other fairshare
white papers. The fairshare usage parameters are in $PBS_HOME/sched_priv/sched_config file. Settings to enhance precision include
a pbs_server attribute and parameter in $PBS_HOME/mom_priv/config file on the execution host.

Usage parameters: $PBS_HOME/sched_priv/sched_config
fairshare_usage_res

The server records all resources used for a given job each scheduling cycle. This parameter specifies a custom formula against
resources to be recorded for the fairshare usage database. CPU time is the default value (cput).

You may use any standard math operators and operators in the Python math module (you must surround formula in quotes if using
Python operators). Any Integer, Float, Size, or Boolean formatted resource may be used.

All factors in this formula must be tied with a custom or built-in resource; any static factors will not be included in usage accrual. The
fairshare formula for accruing usage is based on the delta of the current cycle and last cycle; any factors without a changing resource
will subtract themselves out.

In this example, the “1000” will be removed from usage; it is a factor without a resource:

fairshare_usage_res: "1000+ncpus*pow(walltime,0.85)" †

† Note: It is advised to have a time-based resource as one of your factors (wall time in the case above). Accruing usage over time helps
you see active usage reporting on your cluster.

fairshare_decay_time

Periodically, fairshare decays all usage of the fairshare tree. By default, this happens every 24 hours. The timer starts when the
scheduler daemon is turned on and resets each decay cycle.

fairshare_decay_time: 24:00:00

Your fairshare_decay_time parameter should be set longer than your scheduler’s scheduling_iteration parameter (default
10 minutes). If it’s not, you may create unintended results; usage decayed multiple times before accrual.

Running the pbsfs -d command does not reset the decay cycle.

fairshare_decay_factor

The usage database multiplies all entity usage by the fairshare_decay_factor every decay cycle or forced decay. By default, this
is set at 0.5.

fairshare_decay_factor: 0.5

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 3

This factor may not be below 0 or above 1.

Server Attribute:
scheduler_iteration

This is one of the settings that helps increase accuracy of usage reporting. By default, the scheduler will start a cycle every 10 minutes
if no other action kicked off a sched cycle. Lowering this parameter may help increase usage accuracy, especially if you have short jobs
submitted in batches.

A job’s usage will only be recorded at the beginning of a scheduling cycle if the job is still running. A job ending between two scheduling
cycles will lose all resource usage from last successful recording of usage (beginning of last sched cycle) until job end.

MoM Parameters: $PBS_HOME/mom_priv/config
An execution host (MoM) will periodically post all job usage (poll) data back to the server. On job start, it defaults the poll reporting to
the $min_check_poll time and increases length each reporting cycle until reaching $max_check_poll time, where it remains until
job completion. At job completion, the MoM will also report total job usage to the server.

By decreasing the time intervals of polling, you may increase the accuracy of fairshare usage data. However, you also increase
communication activity with the server, reducing its ability to get other work done.

This parameter will influence the polling times of the MoM to all sources, including those running MPI jobs (polling back to the Mother
Superior) and reporting for the PBS Professional budget component.

$min_check_poll

This is the minimum time a MoM polls to the server (in seconds) unless job completion falls before $min_check_poll.

Minimum is 1 second, but it’s not recommended to set it to less than 10 seconds (default).

$max_check_poll

The $max_check_poll is the longest time in seconds without reporting usage.

Minimum is 1 second, but it’s not recommended to set it to less than 30 seconds (default 120 seconds).

Processing Order of Fairshare Events
Fairshare works within a scheduling cycle. The processes may be viewed like Agile development; a sprint cycle (scheduling cycle)
containing many scrum cycles (job submission cycles). The figure shows numbers relating to steps described below.

Start of the Scheduling Cycle
The usage database is the main topic of fairshare:

1. Updates the usage database as described in the “Updating the

Usage Database” section below

• Decay if needed

• Add leaf to unknown branch if needed

2. Reads in the usage database to memory (temp usage database)

Each Job Submission Cycle
Fairshare only uses the temp usage database for the rest of the scheduling cycle:

1. Reads temp usage database to calculate the “most deserving” entity list

2. Waits for scheduler (using other tools) to select a valid job of most deserving entity and notify the server

• Scheduler will walk down most deserving list until it finds a runnable top-job

Job
Submission

Cycle(s)

Scheduling
Cycle

Figure 1: Scheduling and Job Submission Cycles

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 4

• The scheduler is smart, reserving resources so top entity jobs don’t get pushed further than needed

3. Updates temp usage database with the scheduled jobs’ entire requested usage (measured against the

fairshare_usage_res formula)

4. Repeats job submission cycle until unable to schedule more jobs

End of the Scheduling Cycle
Fairshare does not update the usage database here. All new information about the usage of entities will be updated and reread into
memory during the next scheduling cycle.

Updating the Usage Database
There are five paths to alter the usage database:

1. Write usage of polled data from execution hosts (MoMs) at the beginning of scheduling cycle.

2. Decay usage after reaching fairshare_decay_time at beginning of sched cycle.

3. Decay usage immediately with pbsfs -d

4. Directly alter an entity’s usage with pbsfs -s <entity name> <usage>

5. Delete the usage database file, resetting all usage.

Two conditions must be met to record a job’s usage at the beginning of a scheduling cycle:

1. A MoM must have polled new usage data since the last scheduling cycle.

2. The job must be running.

a. A sched cycle may fire off after-job completion. That job’s usage will not be recorded; it’s not currently running.

Accuracy of Reported Usage
Accuracy is not a concern for many system administrators. Entities will, over time, average out losses and become balanced to one
another. If you are seeing heavy imbalances between your users or are running quick jobs, it may help you to adjust settings for usage
data accuracy.

The image below shows an extreme example of a 30-minute job which lost 13 minutes of usage (cput) due to $min_check_poll of
120, $max_check_poll of 240, and a long scheduler_iteration duration (>10 min).

Figure 2: Example of Loss of Usage Within Fairshare

Lost Minutes:
If the job ended at these
times, these minutes
would be lost.

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 5

Each scheduling cycle (Cycle #) shows (in orange) how much usage is added in the fairshare usage database for the job-owning-entity.
It also shows the amount of usage lost (not recorded) during that scheduling cycle.

The last scheduling cycle is assumed to kick off due to job end, not scheduler_iteration. It does not record new usage, including
multiple polled data, into the usage database (condition 2 above is not met); the 13 minutes are lost.

Jobs executing start-to-finish within a sched cycle and/or few polling cycles may go completely unnoticed by fairshare because of
limitations of polling and scheduling cycles.

Accuracy in Rounding Display
When you begin to calculate the leaves and branches of pbsfs output, you will notice it doesn’t add up (it rarely does).

All usage numbers are displayed using a rounded integer. Recording and calculations are still precise, using actual values.

These rules explain the nuances of pbsfs output. Overall, however, this is unlikely to make a difference when determining the order of
deserving entities.

• For historical reasons, fairshare usage counts 1 == 0

• If leaf usage = 1, branch does not add to total.
• All other real numbers are counted, including 1.00001 and 0.99999.
• It doesn’t matter how a leaf hits 1: newly created, set to 1, or through decay.

• Leaves and branches follow “round half down” (it must be greater than .5 to round up).

• Branches always have 0 1 (0==1 in fairshare) usage as an entity (even if you try to set forcibly), and will add that 1 usage to
the sum of their children to display total usage

Here’s a snippet from pbsfs you will see if 2 leaves as a group are set to 10.5 usage:

B1 : Grp: 0 cgrp: 100 Shares: 10 Usage: 22 Perc: 10.000%

L2 : Grp: 100 cgrp: 102 Shares: 0 Usage: 10 Perc: 0.000%

L1 : Grp: 100 cgrp: 101 Shares: 10 Usage: 10 Perc: 10.000%

The total usage of the two children is 21, but the branch always adds its own usage (1) to displayed total, reaching 22.

Branch usage, being 1, will not be added to its parent total. Namely, branch usage doesn’t get added up the tree. Only the leaves
(actual usage) count towards the entire tree usage (+1 for TREEROOT branch).

The Usage Database and pbsfs
The usage database is a flat file. It persists through PBS scheduler restarts and even while fairshare parameter is set to false.

You can see the current known (rounded) usage using:

pbsfs

Round Half Down

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 6

[root@minimal ~]# pbsfs
Fairshare usage units are in: ncpus*pow(walltime,0.85)
TREEROOT : Grp: -1 cgrp: 0 Shares: -1 Usage: 1 Perc: 100.000%
B4 : Grp: 0 cgrp: 300 Shares: 20 Usage: 1 Perc: 20.000%
L8 : Grp: 300 cgrp: 301 Shares: 5 Usage: 1 Perc: 20.000%
L7 : Grp: 0 cgrp: 1 Shares: 40 Usage: 1 Perc: 40.000%
B2 : Grp: 0 cgrp: 200 Shares: 20 Usage: 1 Perc: 20.000%
B3 : Grp: 200 cgrp: 210 Shares: 75 Usage: 1 Perc: 15.000%
L6 : Grp: 210 cgrp: 212 Shares: 5 Usage: 1 Perc: 5.000%
L5 : Grp: 210 cgrp: 211 Shares: 10 Usage: 1 Perc: 10.000%
L4 : Grp: 200 cgrp: 202 Shares: 15 Usage: 1 Perc: 3.000%
L3 : Grp: 200 cgrp: 201 Shares: 10 Usage: 1 Perc: 2.000%
B1 : Grp: 0 cgrp: 100 Shares: 10 Usage: 1 Perc: 10.000%
L2 : Grp: 100 cgrp: 102 Shares: 0 Usage: 1 Perc: 0.000%
L1 : Grp: 100 cgrp: 101 Shares: 10 Usage: 1 Perc: 10.000%
unknown : Grp: 0 cgrp: 1 Shares: 10 Usage: 1 Perc: 10.000%
L9 : Grp: 1 cgrp: -1 Shares: 1 Usage: 1 Perc: 3.333%
L10 : Grp: 1 cgrp: -1 Shares: 1 Usage: 1 Perc: 3.333%
L11 : Grp: 1 cgrp: -1 Shares: 1 Usage: 1 Perc: 3.333%

The first four columns’ data are pulled from the resource_group file. The usage (rounded) is read directly from the usage file. Lastly, the
percentage of the cluster allocated to each branch and leaf is based on shares defined in resource_group file.

All new entities begin with “1” usage.

Figure 3: Example Fairshare Tree

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 7

Decaying Usage
You can forcibly decay all leaf usage in the fairshare tree using:

pbsfs -d

Rules with decaying usage:

• Every entity usage is multiplied by the same fairshare_decay_factor

• pbsfs -d does not influence the fairshare_decay_time; does not reset last decay.

• If usage after decay < 1, current usage = 1.

• If an unknown leaf reaches 1 usage, it is removed from the usage database.

Assigning Usage
You may allocate a specific usage to a leaf using:

pbsfs -s <vertex name> <usage>

Rules with assigning usage:

• The entity must currently be in the usage database or in the resource_group file.

• No error or change will be displayed if running this command on a branch; it must be run on a leaf.

• Negative usage allocation is not possible.

Comparing Entity Usage
A quick way to compare “most deserving” entities is to use:

pbsfs -c <vertex 1> <vertex 2>

This function only has 3 outputs:

• <vertex name> of the most deserving between the two

• <vertex name> == <vertex name> if they are equivalent

• An error if it cannot find entity or other input error

Viewing All Fairshare Data on an Entity
You can view current fairshare data of an entity using:

pbsfs -g <vertex name>

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 8

Here is the output of the L5 leaf of figure 3. There are no unknown leaves and all leaves’ usage is set to 100.

[root@minimal ~]# pbsfs -g L5
fairshare entity: L5
Resgroup : 210
cresgroup : 211
Shares : 10
Percentage : 10.000001%
fairshare_tree_usage : 0.333750
usage : 100 (ncpus*pow(walltime,0.85))
usage/perc : 1000
Path from root:
TREEROOT : 0 801 / 1.000 = 801
B2 : 200 401 / 0.200 = 2005
B3 : 210 201 / 0.150 = 1340
L5 : 211 100 / 0.100 = 1000

For explanation of this output, see the “Fairshare Calculations” section below.

Fairshare Calculations
pbsfs -g carries a lot of information, but with little explanation. Using the values, you can see:

• At-a-glance knowledge of weighted usage in the tree; which branches / leaves are ‘heavy’ or ‘light’ in their use

• Isolated direct lineage of a vertex

• Allocation of entire cluster to vertex

• fairshare_tree_usage; a measurement of ‘weight’ within the cluster, able to be compared with vertices directly

Embedded are new values and variables used for calculating most deserving entities and comparing usage.

This section will introduce those new variables and give their formulas for calculation.

Output of pbsfs -g
Listed below is an embedded explanation of each field.

fairshare entity: <entity name>
Resgroup : <parent vertex fairshare ID>
cresgroup : <vertex fairshare ID>
Shares : <#shares>
Percentage : <% of cluster to entity>
fairshare_tree_usage : <fairshare_tree_usage>
usage : <usage> <fairshare_usage_res>
usage/perc : <usage> / <fairshare_tree_usage>
Path from root:
<parent name> : <vertex fairshare ID> <usage> / <% of cluster to entity> =
<usage/perc>
…
<entity name> : <vertex fairshare ID> <usage> / <% of cluster to entity> =
<usage/perc>

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 9

resource_group File usage File Calculated Fields

<parent vertex fairshare ID> <entity name> <% of cluster to entity>

<vertex fairshare ID> <usage> <fairshare tree usage>

<parent name> <usage/perc>

Calculated Fields:
<% of cluster to entity> – a measure of how much usage of the cluster is targeted for the entity

<parent % of cluster to entity> * N
(See fairshare tree usage formula for ‘N’)

<fairshare tree usage> – measurement to compare deserving entities with (or against) each other

For root’s children:
𝑭𝑭 = 𝑽𝑽

For entities below root’s children:
𝑭𝑭 = 𝑽𝑽 + (𝑭𝑭𝑭𝑭 − 𝑽𝑽) ∗ 𝑵𝑵

Where
F = fairshare_tree_usage
V = vertex's % total usage =
 <usage> / <TREEROOT usage>
Fp = fairshare_tree_usage of parent
N = Normalized percent of shares within sibling group
 <#shares> / (<#shares> + <sum of sibling shares>)OR
 <% of cluster to entity> / <parent % of cluster to entity>

<usage/perc> – relative weight against TREEROOT <usage/perc> value for ‘quick read’ of entity over/under usage

<usage> / <% of cluster to entity>

The value of <#shares> is only important to calculate the weighted percentage of a parent branch among siblings.

The tail of pbsfs -g <vertex name> has everything to calculate the three fairshare terms for an entity as well as its parents.

fairshare_factor (not used above but may be valuable) – a relative balance or scale of the current vertex usage of the cluster.
Calculated as a number between 0 and 1, it displays 0.5 if using exactly how much is intended. The higher the number, the more
deserving the entity.

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 10

The formula:

2^-(fairshare_tree_usage/fairshare_perc)

This is not actively used by fairshare to determine most deserving entity but is a tool that may be used in job sorting.

Calculating Fairshare Example

The example calculated below uses the figure 3 fairshare tree, with all entities set to 100 usage and no unknown leaves. The target is
to calculate the <fairshare_tree_usage> value (0.333750).

Bottom of pbsfs -g output: path from root, or the ‘ancestry’ to the entity (line numbers and highlights added for clarity):

Path from root:
TREEROOT : 0 801 / 1.000 = 801
B2 : 200 401 / 0.200 = 2005
B3 : 210 201 / 0.150 = 1340
L5 : 211 100 / 0.100 = 1000

Line 1: TREEROOT

This line will always have <fairshare_perc> as 1.000 and thus <percent usage> = <accrued usage>

Line 2: B2

B2 is a direct entity of TREEROOT. Its <fairshare_tree_usage> is simply <usage> (401) / <TREEROOT usage> (801)

401 / 801 = 0.500624

1
2
3
4

Figure 3: Example Fairshare Tree

WHITE PAPER

 © Altair Engineering, Inc. All Rights Reserved. / Nasdaq: ALTR / altair.com / 11

Line 3: B3

B3 is not a child of TREEROOT, now it must consider weight of siblings and parent usage percentage.

V = 201 / 801 = 0.250936

Fp = 0.500624

N = [Line 3 <% of cluster to entity>] / [Line 2 <% of cluster to entity>]
N = 0.150 / 0.200 = 0.75

F = V + (Fp – V) * N
F = 0.250936 + (0.500624 - 0.250936) * 0.75
F = 0.438202

Line 4: L5

V = 100 / 801 = 0.124844

Fp = 0.438202

N = 0.100 / 0.150 = 0.666667

F = 0.124844 + (0.438202 - 0.124844) * 0.666667
F ≃ 0.333750

Conclusion
Fairshare allows you to control how your cluster is shared among entities. Knowing how fairshare calculates usage and weights the tree
allows you to adjust the system to your needs. These tools can help you determine the most deserving entity on your cluster and plan
accordingly.

	Understanding FAIRSHARE Usage FOR Altair PBS® PROFESSIONAL®
	Joe Miller III – Technical Support Engineer, Altair / November 17, 2020
	Introduction to PBS Professional
	Introduction to Fairshare
	Scope
	Challenges
	Usage Overview
	Configurations Influencing Fairshare Usage
	Usage parameters: $PBS_HOME/sched_priv/sched_config
	Server Attribute:
	MoM Parameters: $PBS_HOME/mom_priv/config
	Processing Order of Fairshare Events
	Start of the Scheduling Cycle
	Each Job Submission Cycle
	End of the Scheduling Cycle
	Updating the Usage Database
	Accuracy of Reported Usage
	Accuracy in Rounding Display
	The Usage Database and pbsfs
	Decaying Usage
	Assigning Usage
	Comparing Entity Usage
	Viewing All Fairshare Data on an Entity
	Fairshare Calculations
	Output of pbsfs -g
	Calculated Fields:
	<% of cluster to entity> – a measure of how much usage of the cluster is targeted for the entity
	<fairshare tree usage> – measurement to compare deserving entities with (or against) each other
	<usage/perc> – relative weight against TREEROOT <usage/perc> value for ‘quick read’ of entity over/under usage
	fairshare_factor (not used above but may be valuable) – a relative balance or scale of the current vertex usage of the cluster.
	Calculating Fairshare Example
	Conclusion

