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Abstract— Products and processes have become 

increasingly complex to meet demands on performance, 

reliability, and cost. As a result, simulation has become a 

key component to successfully designing and delivering 

these products to market.  Mechatronics--also known as 

smart or cyber-physical systems—is a marriage of machine 

to sensors, actuators, and computing power to achieve the 

system goals which cannot be achieved by a purely 

mechanical system alone.  The Model-Based Development 

(MBD) process leverages simulation models and can 

improve the design and delivery while supporting complex 

products like mechatronics systems.   
 

Using Altair's suite of tools and partner products, the 

simulation process from requirements management to 

functional system analysis, cascading down to component 

design can be achieved for a Model-Based Development 

approach.  This paper will highlight two of these tools as a 

part of MBD during the design phase for plant modeling 

and controls synthesis: solidThinking Activate for 1D 

system simulation, and MotionSolve for 3D multibody 

system simulation.  As a case study, a 1D simulation model 

of an active suspension system is explored at different stages 

of vehicle development including integration with 3D 

models via co-simulation. 
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I. OUTLINE 

This paper is organized as follows:   

Section II introduces the Model-Based 
Development (MBD) process and its benefits for 
creating and supporting complex mechatronic 
systems.  1D and 3D system-level modeling tools 
from Altair that support MBD for mechatronic 
systems are also summarized.   

Section III provides some background on active 
suspension systems that will be used in several 
examples to illustrate the use of 1D and 3D 
simulation tools within MBD.   

Section IV develops the functional simulation 
model of the active suspension within a 1D 
simulation tool, both the mechanism (plant) as well 
as the controller model used to explore the design.  

Section V reviews usage of a 1D simulation tool 
within a systems engineering requirements 
management tool to perform early design studies for 
products that are composed of many subsystems that 
interact and may have competing design parameters. 

Section VI considers an alternative modeling 
method using Modelica components, which allows 
1D model to be created and shared more easily as well 
as extend the fidelity by adding more details for the 
components of the mechatronics system. 

Section VII imports the need to couple different 
simulation tools for full system modeling which may 
be achieved with a standardized interface called the 
Functional Mock-up Interface, as well as other 
features of 1D and 3D tools. 

Section VIII describes options for increasing the 
fidelity of the mechanism (plant) model by coupling 
1D with tools like CarSim for vehicle-specific 
modeling and MotionSolve for more detailed vehicle 
and general mechanism.  An example of MotionSolve 
+ Activate co-simulation is developed to test the 
active suspension with a high-fidelity 3D model. 

Section IX highlights options for creating and 
validating 1D models based on more detailed 3D 
models. 
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II. INTRODUCTION – MODEL-BASED 

DEVELOPMENT 

Over the last several decades, mechatronic 
systems have become increasingly prevalent and 
important to our lives.  A key driver of this has been 
the improvement of the power and cost of embedded 
controllers and peripherals, which find their way into 
new products.  Mechatronic systems take many 
forms: they improve safety in vehicles with systems 
like anti-lock braking and stability control and may 
be found underfoot in your house in the form of 
autonomous vacuums. Surgeons use robotics to 
stabilize their view of the heart for open-heart 
surgery, and exoskeletons assist people to help with 
repeated heavy lifting.   Drones are now delivering 
packages. 

Vehicles in general are heavily dependent on 
mechatronics systems to achieve the levels of 
performance and safety required.  E-steering, E-
throttle and now E-braking are found in production 
vehicles.  And, these systems are communicating 
with each to each other for new gains in performance; 
for example, Mazda’s G-Vectoring Control system 
integrates control of engine, transmission, chassis and 
body, where sensors monitor steering and throttle 
position to help the driver more safely and 
comfortably control the steering behavior while 
powering through a turn [1]. 

How can these increasingly complex systems be built 
within time and budget constraints, while meeting 
customer requirements for performance, reliability, 
and quality? 

Concurrent design of mechatronics systems – 
considering all systems – is not yet mainstream.  
Historically, the software for embedded control 
systems is developed after the design phase which 
includes the mechanism and selection of actuators 
and electronics. This approach may prove costly if the 
design requirements are not achievable when the 
completed system is finally tested. 

Model-Based Development (MBD) is a process that 
helps to manage and reduce the risk of creating 
complex systems.  This process relies on simulation 
models and  flows from abstract to the specific, which 
means that design starts with system-level 
requirements, and flows from functional system 
models to detailed system models to component 

models, and back up to implementation through 
testing, as shown in the V-diagram in Figure 1.  

 

 

Figure 1: Extended V-model according to Eigner et al.[14] 

 

Throughout this process, simulation assists in driving 
from the high-level requirements down to component 
level design.  System-level simulation tools help 
engineers and designers to analyze designs based on 
different levels of fidelity throughout the process, 
which is based on the needs of the simulation and the 
data available at the time. 

For example, early in the design process, no 
component geometry may be available, so functional 
behavior is captured at this point.  Later, as this 
functional behavior is better defined and more data 
(e.g., geometry, etc.) is available, detailed models 
capture the system behavior more accurately as the 
design comes to form. 

While building these models requires investment, this 
approach pays dividends by providing many benefits 
critical in meeting design requirements and 
mitigating problems that are expensive to fix late in 
the design process: 

 Test designs earlier in design process when 
changes are less expensive 

 Perform design studies and optimization 
with parametric models to best meet 
requirements and determine the most 
influential design parameters 

 Integrate multi-domain, multi-department 
systems in an open environment 

 Leverage the knowledge of different 
systems into one model, containing both 
1D and 3D models 



 

 

System-level simulation models can be performed by 
different tools depending on the preferences of the 
designers/analysts.  Altair offers several tools in the 
Math and Systems categories to help with Model-
Based Development, as modeling approaches and 
methods vary at different phases of design: 

 solidThinking Compose –  Math engine, 
Integrated Development Environment 
scripting for programmatic models, including 
OML (an Octave-like language), TCL, and 
Python 

 solidThinking Activate – Block-diagram (1D) 
multi-domain system level modeling and 
optimization with system integration via 
Functional Mock-up Interface 

 solidThinking Embed – Block-diagram and 
state chart (1D) modeling tool with highly 
efficient code generation for embedded 
controller hardware, high speed data interface 
for Hardware in the Loop (HIL) testing 

 MotionSolve – 3D Multibody system 
simulation, with wide array of modeling 
entities for linear and non-linear plant 
modeling, open architecture, powerful model 
creation including CAD import,  and co-
simulation capabilities 

For example, simulation with solidThinking Activate 
allows a user to model various physical dynamic 
systems, control systems, actuators and sensors in a 
convenient block diagram environment, which can 
also be coupled via co-simulation with MotionSolve 
for more detailed plant modeling.  

Activate is also a platform for multi-domain system 
integration via Functional Mock-up Interface and 
support for Modelica libraries (described in more 
detail later). 

Moreover, models in MotionSolve can be linearized 
for classical control system design, and its powerful 
non-linear capabilities helps model critical effects 
ranging from friction, to component flexibility, to 
contact between colliding bodies.  Additional 
capabilities are available for integration with 
Fortran/C/Python which may be used to work with 
legacy models.  Finally, integration with other 
HyperWorks tools allows engineers to perform multi-
physics simulation and perform component-level 
design optimization. 

 

 

Figure 2:  Altair’s Simulation Support in the V-Model [15] 

 

Through examples of an active suspension system, 
this paper will explore how 1D and 3D system models 
can be leveraged in the Model-Based Development 
process for varying levels of model fidelity.  These 
examples will range from initial controller design 
exploration with a simplified Activate model to 
detailed 3D multibody simulation to test the 
mechatronics system via Activate + MotionSolve co-
simulation.   

 

III. INTRODUCTION – ACTIVE SUSPENSION 

Automotive suspensions provide utility in vehicle 
design by increasing comfort of passengers and 
controlling the vehicle response to driver inputs and 
road disturbances. A more detailed list of design 
requirements for these systems usually includes ride 
comfort, durability, handling (performance, safety), 
and packaging.  Optimizing these systems requires 
compromise on design factors that compete to 
achieve desired performance. Many different 
suspension types can be found for passenger vehicles.  
The majority of these rely on passive systems with 
spring and damping characteristics that are tuned to 
meet the objectives of the vehicle. A common design 
is to use a coil spring and shock combination between 
control arms and/or the vehicle chassis.   

Shocks have a big influence on ride comfort and 
handling of vehicles as they are a main source of 
damping in the suspension. Typically, the shocks are 



 

 

hydraulic and control the damping characteristic by 
forcing the fluid through small holes.  

Active or semi-active suspension systems are used to 
improve ride and handling behavior compared to a 
passive system.   Semi-active suspensions control the 
damping behavior, while (fully) active versions 
provide direct actuation on the suspension.  This is 
usually added in parallel with a passive system so that 
if the active system fails, the passive spring/shock 
will still support the vehicle.  Some modern active 
suspensions have tunable settings that allow the 
driver to change the behavior of the suspension [2]. 

While active suspensions have been around for many 
years, the technology that helps build these systems 
has improved to make them perform better and at less 
cost, and thus are more broadly feasible. 

If we consider the high-level topology of a fully-
active suspension, a controller is used to compute the 
actuation force to improve on the passive system 
performance.  Typically, the motion of the wheel is 
measured via sensors and used by the controller to 
provide the strategy for input to the actuator.  
Different strategies have been studied for control, 
from PID to fuzzy logic, optimal and sliding mode 
control [3]. 

The next section describes the details of how this 
system is modeled and how the controller strategy is 
developed. 

 

IV. FUNCTIONAL PLANT AND CONTROLLER 

DESIGN 

 

Early in the design process and before the detailed 

design is available, simple 1D models can be used to 

help explore designs.  In this section a model in 

solidThinking Activate illustrates this approach. 

 

The mechatronics system is divided into four main 

categories: 

 

1. Plant (mechanism or process to be 

controlled) 

2. Controller 

3. Sensors 

4. Actuators 

 

Initially, to analyze a control strategy in this section, 

only the first two categories will be considered.   

 

A 1D plant model is often a relatively simple model 

with limited fidelity, which captures the functional 

behavior to design control systems.   This simple 

model also has the advantage of being fast, which can 

provide real-time performance needed for hardware-

in-the-loop simulation. 

 

Often these models (typically non-linear in response) 

are approximated as a linear system – these are 

simpler models and helps provide insight to the 

behavior of the system.  They also allow the use of 

linear controls analysis tools to help analyze and 

design the controller. 

 

Plant Modeling 

 

The plant model in this case is a quarter car ride 

model of the vehicle including a simplified 

suspension. This quarter model is a reasonable 

representation for independent suspension systems 

with the assumption that the parameters of the system 

accurately reflect the behavior of the real physical 

vehicle.  It consists of a two-mass spring damper 

system: 

 

 Sprung Mass – representing the vehicle 

chassis and a portion of the suspension and 

driveline components that are supported by 

the springs 

 

 Unsprung Mass – the wheel/tire and 

remaining portion of the suspension and 

driveline components that are not supported 

by the springs  

 

One spring and damper set is connected in parallel 

between the sprung and unsprung masses to 

represent the suspension vertical compliance, and 

another is between the unsprung mass and ground to 

represent the tire vertical compliance.   
 

 

 



 

 

 
 

 

Figure 3:  Quarter-car ride model diagram 

 

The equations of motion for the quarter-car ride 

model are as follows [4]: 

 

𝑀𝑠𝑍𝑠̈ + 𝐾𝑠(𝑍𝑠 – 𝑍𝑢𝑠) + 𝐶𝑠(𝑍𝑠̇ – 𝑍𝑢𝑠
̇ ) + 𝑈𝑎 = 0 

 

𝑀𝑢𝑠𝑍𝑢𝑠
̈ + 𝐾𝑠(𝑍𝑢𝑠 – 𝑍𝑠)

+ 𝐶𝑠(𝑍𝑢𝑠
̇  – 𝑍𝑠̇)  + 𝐶𝑢𝑠(𝑍𝑢𝑠

̇  – 𝑍𝑟𝑜𝑎𝑑
̇ )  

+ 𝐾𝑢𝑠(𝑍𝑢𝑠 – 𝑍𝑟𝑜𝑎𝑑) − 𝑈𝑎 = 0 

 

States: 

Tire displacement (𝑍𝑢𝑠  – 𝑍𝑟𝑜𝑎𝑑) 

Unsprung mass velocity (𝑍𝑢𝑠
̇ ) 

Suspension stroke (𝑍𝑠 – 𝑍𝑢𝑠) 

Sprung mass velocity (𝑍𝑠̇) 

 

 

Dynamic equations such as these can be implemented 

in different ways within solidThinking Activate, 

depending on what is needed. For example, because 

these equations are in linear form, a state-space block 

may be used to represent the equations of motion for 

the ride model.   In this case, a more general form of 

equations is used with a Matrix Expression block, 

which allows any general form of matrix equations to 

be represented and allows for additional terms to be 

added later, as needed. 

  

 
Figure 4:  Matrix Expression Block 

 

Inputs to the block shown above are: 

 

1. Road disturbance velocity 

2. Actuator force 

3. Vehicle states (vector) 

 

Outputs of this block (green, below) are derivative of 

the vehicle states, which are integrated by the Integral 

block to get the vehicle states, shown below in Figure 

5. 

 

 
Figure 5:  Quarter-car ride model inputs 

 

 

Controller Modeling 

 

The suspension performance can be evaluated by 

measuring these outputs in the simulation model: 

 

 Ride:  Acceleration of the sprung mass 

 Handling:  Displacement of the tire 

 Packaging:  Relative displacement between 

sprung/unsprung masses  

 

For this model, a Linear Quadratic Regulator (LQR) 

will be used for control, which is a form of optimal 

control for state feedback that we can use to balance 

the requirements for ride, handling, and packaging.   

 

Activate supports a controls toolbox – a library of 

functions that help to build control systems within 

command line or scripts within Activate.  Using the 

scripting support, the Controllability condition of the 

system can be computed to make sure that full-state 

feedback can be used to implement the LQR control. 

Mus, 

unsprung 

mass 

Ms, 

sprung 

mass 

 

Zs 

Ks, Cs 

Kus, Cus 

Zus 

Z
road

 

Uactuator 



 

 

Using the function ctrb(), we can confirm that the 

quarter car model is indeed controllable based on the 

A and B state-space matrices which define the linear 

system equations. 

 
 

 

 
 

The goal of the LQR is to compute the state-feedback 

gain matrix that minimizes the cost function, which is 

a function of weighted states of the system and the 

input actuation force.  The states and input signals are 

squared to remove sign dependencies giving the cost 

function a quadratic shape. 

 

Activate supports an LQR function which takes as 

arguments the matrices for the linear state equations 

of our quarter car model (A, B) as well as the weights 

for the states (Q) and actuator force (R).  By selecting 

different values for the weights in Q and R, we can 

affect the behavior of the system. 

 

The Activate model is parametric, so we can change 

the design by varying parameters.   We can set a string 

to choose different weights for the LQR function and 

simulate the different behavior over the different road 

surfaces. 
 

 

 
 

Additionally, we can explore adding an observer to 

the system to eliminate the need to measure all of the 

states of the system to provide state-feedback control.  

The Observability of the system can be ascertained 

with the Controls Toolbox in Activate using the 

obsv() function, and indeed the system is observable 

based on the A and C state-space matrices. 

 

 
 

An observer makes use of the equation for the plant 

model to estimate unmeasured states from those 

states that are measured.  As a parallel to the gain for 

feedback control (K), we want to design a feedback 

gain for the observer (L) to minimize the error in the 

estimate for the states that are estimated by the 

observer.  We can use the place() function to place 

the observer poles to be faster than the controller 

poles to get good performance. 

 

 
 

The Activate model with full-state feedback is shown 

in Figure 6 below, with and without an observer to 

test performance of the observer.  Additionally, a 

Switch block is used to quickly toggle topology to test 

different configurations (with and without active 

suspension actuator, with or without observer).    

 



 

 

 
Figure 6:   Feedback Controller Added, with Switch blocks to 

control model topology 

 

In Figure 7, you can see that the model has options 

for different roads, provided as a velocity disturbance 

to the quarter car model – two types of single bumps 

and a rough road, and again a switch block is used to 

choose which road input is active. 

 

 
Figure 7:  Top-level of model with road inputs 

 

 

Single Bump 

 

The road model first explored is a single bump, with 

displacement computed as follows [5]: 

 

𝑍𝑟𝑜𝑎𝑑 

=  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
(1 − cos(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝜋 ∗ 𝑡𝑖𝑚𝑒))

2
 

 

Where: 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑢𝑚𝑝
 

The passive system will be compared to three designs 

for the controller – “soft”, “moderate”, and “firm”, 

which have different weighting on the states for the 

LQR controller.   

 

Looking at the suspension stroke (packaging) vs. 

sprung mass acceleration (ride), for this particular 

design that the “soft” suspension tuning has the 

largest peak suspension stroke with the smallest peak 

acceleration (Figures 8, 9): 
 

 

  
Figure 8:  Single Bump Comparison – Suspension Stroke 

 

 



 

 

Figure 9:  Single Bump Comparison – Sprung Mass 

Acceleration 

 

The observer may also be evaluated and compared for 

the single bump test (Figure 10). 

 

 
Figure 10:  Suspension Stroke with/without observer 
 

Rough Road 

 

Evaluating the vehicle response to rough road inputs 

is another important consideration for design.  The 

rough road input is modeled with the following 

equation [6]: 
 

𝑅𝑜𝑎𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐼𝑛𝑝𝑢𝑡 =  √
𝜎2𝛼𝑉

𝜋
𝑟𝑎𝑛𝑑𝑜𝑚(𝑁) 

…where symbols sigma and alpha are parameters that 

depend on the road surface, V = vehicle velocity, and 

the function random(N) provides N pseudo-random 

numbers.  This is implemented in the Activate model 

as a superblock and is modeled similarly as follows: 
 

 
Figure 11:  Rough road model 

 

In this model values for sigma and alpha are chosen 

to represent a “dirt road”. 

 

Root Mean Square (RMS) and Absorbed Power 

computations are used in the model to quantify 

response to the rough road input.  Shown below in 

Figure 12 is a comparison of a passive suspension to 

the different settings for the active suspension, and 

you can see that the active suspension can 

significantly reduce the overall RMS acceleration and 

thus improve ride comfort.  You can also see that the 

“Firm” setting increases the RMS acceleration as it 

weights other requirements more like reducing 

suspension stroke. 

 

 
Figure 12:  Root Mean Square Sprung Mass Acceleration 

 

This simple model enables different control strategies 

to be evaluated, e.g., active vs. semi-active vs. passive 

in order to understand bounds on performance.  Other 



 

 

aspects of design that can be explored include 

discovering design sensitivities, both mechanical and 

logical, and effects of delays to the control system.  

As more data is available and the design progresses, 

the evaluation of sensors and actuators can be added, 

including effects of noise, sensitivity, accuracy, 

performance, etc. 

 

V. SYSTEM REQUIREMENTS MANAGEMENT  

 

Functional system models are used early in the design 

process to explore the feasibility of different control 

systems and the effects of changes to the plant model, 

like this active suspension example. However, the 

active suspension is only one of many systems on a 

vehicle that need to be designed and the vehicle as a 

whole will have many competing or coupled design 

parameters. In order to design the complete vehicle 

system, the other requirements should be consider 

and linked to either simulation, test or some other 

form of evaluation data that can be used to consider 

design alternatives. 

 

The Altair Partner Product XLDyn [15] is a systems 

engineering tool to balance system level 

requirements, helping answer questions early in 

development through an add-in tool for Microsoft 

Excel® ™ . 

 

 
Figure 13:  XLDyn creates SysML models from requirements 

documents for dynamic verification and tracking 

 

XLDyn has both a requirements management feature 

set built into XLSE, as well as a simplified system 

modeling tool called XL1D.  XLSE can create 

SysML-based system models of requirements, 

populated by data in formatted documents, which 

may be derived from an enterprise data system 

(Figure 13 above). 

 

XLDyn is also dynamically linked to Activate 

models, which may be run directly from an XLDyn 

spreadsheet.  For example, an anti-lock braking 

system (ABS) shown below is modeled in Activate 

and linked to XLDyn, where any of the design 

parameters in the Activate model can be changed and 



 

 

resulting design evaluated by XLDyn directly. 

(Figures 14, 15 below): 

 

  
Figure 14:  XLDyn integration with Activate 

 

 
Figure 15:  Anti-lock Brake System (ABS) used for systems 

design in XLDyn  

 

Common design parameters can be varied to see the 

impact on the entire system, including built-in Monte 

Carlo analysis. Requirements are verified with 

Measure of Effectiveness (MoE's) via all available 

results -- simulation, observation, test, etc.  With 

complete system models and coupled parameters, you 

can verify design requirements and provide project 

status to management.   
 

 

VI. MODELICA-BASED MODELING 

As the design process evolves and functional design 

is established (e.g., via systems design iteration with 

XLDyn described previously), more detailed models 

emerge to help realize the design. 

 

An active suspension often implements actuation via 

hydraulics, and this behavior should be modeled as it 

typically is non-linear (e.g., Donahue ) [7].   

 

While non-linear equations for hydraulics and other 

effects may be modeled via blocks like the Matrix 

Expression and others, as we used earlier for the 

suspension ride model, alternatively, the system can 

represented by dedicated physical components, 

which represent portions of the real system, like 

valves, pipe, pressure source, etc.  These are 

implemented via Modelica which has a number of 

important benefits, described next. 

 

 

Modelica Modeling 

 

Up to this point, we have modeled the system based 

on traditional signal-based blocks which are causal – 

meaning they have a predefined input and output, as 

in a gain block: 

 
Figure 16:  Signal based blocks 

 

This is a very effect method of modeling for control 

systems where the control algorithms often fit 

naturally within this scheme. 

 

Another method of modeling is based on the 

Modelica language (www.modelica.org), which is an 

object-oriented method design to build component 

that represent physical entities (e.g., springs, 

resistors, pipes, etc.) that comprise models.   These 

components are equation-based and can be built into 

libraries that support different domains.  These 

physical blocks are acausal – they don’t have 

predefined inputs and outputs generally – and a 

compiler symbolically sorts the assembled system 

equations and determine the causality as part of the 

solution process.  This makes building models and 

changing them much easier, as an engineer does not 

need to reformulate the equations for a signal-based 

http://www.modelica.org/


 

 

block approach when adding fidelity to models as the 

design process evolves. 

 

In this regard, the quarter car ride model can be 

alternatively represented by these Modelica-based 

(physical) components for a mechanical system in 

Activate, as shown below: 
  

 
Figure 17:  Modelica implementation of ride model 

 

One benefit to this method in that this assembled 

model more closely represents the topology of the 

real system, as in Figure 17 from top to bottom, you 

can see a component for sprung mass, spring/damper 

for the passive suspension, actuator force, unsprung 

mass, and the a second spring/damper to represent the 

tire.  Models are more easily built, modified and 

shared. Other components shown in the model in 

Figure 17 are added to measure desired outputs – 

displacements, velocities, accelerations, etc. 

 

This physical model can be used to replace the 

portion of the model we had used to derive the 

equations for the Suspension Ride Model via the 

Matrix Expression block, and you can see it replaced 

via a green superblock (a hierarchical composite 

block) shown in the next figure. 

 

 
Figure 18:  Superblock with Modelica components replaces 

traditional signal based block 

 

This model can also be copied quickly and compared 

to the original model for verification, as both signal-

based and Modelica (physical) blocks can be mixed 

in Activate. 

 

 
Figure 19:  Signal-based and Physical-based modeling 

 

Various domains are supported in Modelica-based 

libraries, including mechanical, electrical/electronic, 

hydraulics, thermal, and many others, both open-

source and commercial. 

 

This has advantages of creating and sharing models; 

as an open-source language, you can create and share 

your own libraries.  Many libraries from various 

domains are available, and you can modify open 

source libraries to fit your needs.  

 

  



 

 

VII. MULTI-DOMAIN SYSTEM INTEGRATION 

 

One important aspect of Model-Based Development 

is creating the entire system model, while sharing and 

communicating freely with all of the stakeholders that 

contribute to this model in the design process.  This 

includes not only the early modeling for systems 

engineering and requirements management (e.g. with 

XLDyn), but also to detailed simulation modeling 

that may be combined to analyze each part the full 

system.   Both Activate and MotionSolve support an 

open architecture to be able to achieve this. 

 

A key component to enable full-system modeling is 

the Functional Mock-up Interface (FMI).  FMI 

supports simulation coupling with any other tool that 

implements this open-source standard, including 

solidThinking Activate as well as almost 100 other 

tools at the time of this writing.  Support for FMI 

available to HyperWorks customers through the 

Altair Partner Alliance, which includes CarSim, 

MapleSim, and DSH+ (www.fmi-standard.org).  FMI 

enables tools to be shared and can even hide 

proprietary data in compiled models.  

 

In addition, both Activate and MotionSolve support 

user subroutines.  Activate supports code written in 

C, its own scripting language (HML/OML), and 

Modelica (code written in this standard). 

MotionSolve supports FORTRAN, C/C++, and 

Python. 

   

Flexibility in providing interfaces with other tools is 

important to highlight with MotionSolve.   Besides 

coupling with Activate, MotionSolve also co-

simulates with AcuSolve for Computational Fluid 

Dynamics, with applications including tank sloshing, 

wind turbines, and active grill shutters. 

 

MotionSolve includes other native features that 

implement control systems both linear and non-

linear, including Laplace Transfer Functions, State-

space equations, general non-linear differential 

equations and algebraic equations.   

 

 

VIII. INCREASED FIDELITY PLANT MODELING 

 

As more information is available to build higher-

fidelity models, multibody system simulation can be 

used to improve the accuracy of the simulation. 

Detailed 3D multibody models  can be used to both 

to validate the quarter-car ride model in the 1D 

simulation Activate as well as simulate the plant 

model directly via co-simulation, where Activate still 

models the rest of the mechatronics system for which 

is it better suited– sensors, actuators, and controls. 

 

CarSim [16] is one solution for simulating vehicles 

for applications like control system analysis with 

models in Activate.  CarSim is a software tool from 

Mechanical Simulation Corporation that helps create 

and analyze simplified vehicle models for real-time 

handling performance and Advanced Driver 

Assistance Systems.  Starting with version 2016.1, 

Carsim supports the Functional Mock-up Interface 

(FMI; www.fmi-standard.org) co-simulation by 

including the capability to automatically generate a 

Functional Mock-up Unit (FMU) for co-simulation, 

which is a representation of the model and its 

interface for simulation. 

 

FMI allows vehicle models from CarSim to be co-

simulated with Activate for coupled system analysis.  

For example, we can model an anti-lock brake system 

or active damper in Activate with a vehicle model in 

CarSim.  An example of development of an active 

suspension with CarSim can be found in [3]. 

 

  

http://www.fmi-standard.org/
http://www.fmi-standard.org/


 

 

 
 

 
 

Figure 20:  Functional Mock-up Interface in CarSim 

 

 

 

 

 
 
Figure 21:  Activate ABS system co-simulation with CarSim  

 

CarSim provides an effective representation of the 

vehicle suspension behavior which provides very fast 

simulation, but does not model detailed suspension 

components themselves, so some design tasks like 

extracting the loads on the suspension components, 

are not available. 

 

This is where a 3D solution like MotionSolve is very 

effective.  MotionSolve is Altair’s very powerful, 

flexible, and robust multibody dynamics solver.  

MotionSolve models are created in various ways -- 

either from atomic components (e.g., rigid bodies, 

graphics, joints, forces, etc.), from importing CAD to 

automatically generate mass properties, or via 

libraries of mechanical systems, as with the vehicle 

library that contains various design templates for 

suspensions, vehicles, analyses, and reports.   

 

MotionSolve supports a large range of components to 

create varying levels of fidelity in mechanical system 

models.   This ranges from simple linear and non-

linear spring dampers, to effects like component 

flexibility via Component Mode Synthesis for linear 

flexible or for non-linear flexibility based on the 

Absolute Nodal Coordinate Formulation (ANCF).  

Non-linear bushings, including frequency, amplitude 

and load-dependency are supported, and LuGre 

friction can be easily added to enhance the model 

accuracy.  Detailed tire and road models to capture 

the effects of non-linear tire behavior are also 

integrated into MotionSolve.   

 

In this process of using MotionSolve, once the 

mechanism is defined (for example, based on the 

CAD or FE components to define your parts), 

MotionSolve creates the equations of motion for you, 

so you have no need to derive these.   

 

Now, Activate and MotionSolve can be co-simulated, 

where the vehicle controller can be tuned further, 

actuators verified, test repeatedly and safely, and 

minimize risk with the real prototype.  In addition, 

more accurate system loads can be generated by 

including the detailed control system with the 

mechanism. 

 

With these loads, you can perform durability studies 

with FEMFAT and nCode DesignLife in the Altair 

Partner Alliance, compute stress, and use loads for 

topology optimization in OptiStruct [8]. 

 



 

 

Packaging, and placement of sensors and the system 

vibration are all possible with the 3D multibody 

model. 

 

MotionSolve models are parametric for easy design 

changes and design study/optimization with 

HyperStudy.  MotionSolve results can also be used to 

generate the data required to populate CarSim 

models. 

 

This next example describes the salient modeling for 

the co-simulation with MotionSolve and Activate for 

the active suspension implemented in a full-vehicle 

passenger car in MotionSolve. 

 

Activate-MotionSolve Co-Simulation 

 

The MotionSolve model is a 3D multibody model 

built within the pre-processing interface 

MotionView.  MotionView supports a vehicle library 

to help quickly build and analyze half- and full-

vehicle models, with vehicle specific components 

including tires, bushings, bump stops, rebound stops, 

etc., as well as many standard vehicle analyses and 

accompanying reports.  The vehicle library is open 

source and may be customized. 

 

Baseline Vehicle Description 

 

The vehicle discussed here is a passenger car – a Ford 

Taurus based on an open-source model from National 

Highway Traffic Safety Administration [9].    The 

model is composed of both rigid and flexible bodies 

(based on Component Mode Synthesis, CMS), which 

contribute a large portion of the number of degrees of 

freedom in this model (1201 DOF).  FTire 

(Cosin)[10] is used for the wheels which captures the 

deformation of the tire as it traverses obstacles. 

 

Forces are added to the rear suspension (only) 

between the suspension and the body to apply the 

active suspension forces. 

 

 
Figure 22:  NHSTA Ford Taurus in MotionView (courtesy 

Jiamin Guan, Mike White, Altair) 

 

Flexible Bodies include the vehicle body, front 

subframe, steering column, and front lower link of the 

rear quadlink suspension. 

 

 
Figure 23:  Front MacPherson (left) and Rear Quadlink 

Suspension (right)  

 

 

 
Figure 24:  Rear Quadlink Suspension– rigid control arm (left 

in image) vs. flexible control arm (right)  

 

  



 

 

Simulation Event – Road Bump 

 

For the first event, the vehicle will travel at 20 miles 

per hour over a smooth road until it traverses a bump 

with both axles. 

 
Figure 25:  Highway bump Simulation Event in MotionSolve 

 

 
 

 
Figure 26:  Simulation event ,body hidden 

 

Modifications for Co-simulation with Activate and 

MotionSolve 

 

In order to enable co-simulation, input and output 

runtime variables are created and used in the 

MotionSolve model.  The interfacing input variables 

from Activate to MotionSolve are stored in an array.  

The MotionSolve model requires a solver array of 

type Plant Input, which has a list of solver (runtime) 

variables including: 

 

 Active Suspension Force, left and right  
 

These forces will be computed by the Activate model 

and populated during the co-simulation between 

Activate and MotionSolve. 

 

Similarly, the MotionSolve model requires a solver 

array of type Plant Output to store outputs from 

MotionSolve to Activate, which has a list of solver 

(runtime) variables including: 

 

 Suspension Stroke, Left and right 

 Sprung Mass Velocity and Acceleration 
 

MotionSolve will compute these values during the 

course of the co-simulation and send these over to 

Activate to compute the active suspension forces.  

 

 
Figure 27:  Interfacing entities – shown in the MotionSolve 

model 
 

Finally, in order to use the actuator force 

computations from the Activate model, force entities 

are added in the MotionSolve model and reference 

the Activate suspension force variables shown above 

in order to apply them for co-simulation. 

 

 

Activate Model Changes for Co-Simulation with 

MotionSolve 

 

The plant model, previously represented by a Matrix 

Expression block or Modelica components, is now 

replaced by a MS Signals block which references the 

MotionSolve vehicle model for co-simulation.  The 

inputs and outputs from this block are created 

automatically by Activate based on the Plant Input 

and Plant Output arrays found in the MotionSolve 

model. 

 



 

 

 
Figure 28:  Activate active suspension model for co-simulation 

with MotionSolve 
 

 

 
Figure 29  Dialog in Activate showing inputs/outputs  
 

The active suspension force modeling in Activate 

must be rearranged to accommodate the new model 

topology, but the Controller with Observer block 

(yellow) remains unchanged – this computes the 

feedback gains based on the linear quarter-car ride 

model and uses an observer to estimate unmeasured 

states.  

 

 
Figure 30:  Active Suspension Actuator Force for Co-

Simulation with MotionSolve  
 

Co-Simulation Results  

 

The active suspension at “moderate” setting in the 

Activate script reduces vehicle accelerations by 

approximately one-third (Figure 31), while it requires 

more suspension stroke to achieve this (Figure 32).   
 

 
Figure 31: Sprung Mass Acceleration – Passive vs. Active 

 

 
Figure 32: Suspension Stroke – Passive vs. Active 

 

Peak stress in the rear front lower control arm reduces 

~8% with the active suspension with minimal change 

in stress contours (Figures 33, 34).  The flexible 



 

 

components do not make a significant change in the 

results in this test since the deformations are not large, 

but may be important for other road inputs that 

provide larger forces to the vehicle. 
 

Figure 33:  Stress on LCA - Active Left (Max 2.59– Passive 

Right Max 2.80) 

 

 

 
Figure 34:  Stress on LCA – Active,  Closer View  

 

 

The body of this vehicle is also made flexible by CMS 

and the deformation contour can be reviewed as part 

of the simulation: 
 

 

 
 

Figure 35:  Deformation of Vehicle Body - Front  

 

 

 
 

Figure 36:  Deformation of Vehicle Body - Rear 

 

 

Simulation Event - Pothole 

 

For the second event, the vehicle will travel at 20 

miles per hour over a smooth road while traversing a 

200 mm deep pothole.  The rest of the setup of the 

simulation is identical as for the prior bump event. 

 

 
Figure 37:  Pothole Event – Body Deformation 

 



 

 

 
Figure 38:  Stress in Rear LCA – Pothole Event 

 

In this case, the loads to the vehicle are more 

significant and we can see that the flexible bodies 

have an effect on the behavior of the sprung mass 

acceleration response in Figure 39. 

 

 
Figure 38:  Sprung Mass Acceleration – Pothole Event 

 

IX. USING 3D TO BUILD 1D 

 

Up to this point, we have not discussed the accuracy 

of the 1D model used in the early design phase.  How 

do we know the simplified linear model is accurate 

given that suspension models are non-linear?  

Validation to reliable test data is required in order to 

remove assumptions that the models used are 

producing accurate results.   

 

Physical tests have been historically used for 

performance validation.  However, as more reliance 

on simulation is built up, the role shifts to that of final 

validation with a series of intermediate tests to build 

confidence in simulation [8].   

 

MotionSolve 3D models may be employed to assist 

with validation processes.  For the 1D active 

suspension model, we can consider how the quarter-

car ride model captures the behavior compared to a 

full 3D model with detailed components and 

connections modeled.  With either test data or a 

higher fidelity 3D model from MotionSolve, a 

parameter identification analysis may be done with a 

design study tool like HyperStudy in order to tune the 

parameters in the quarter-car model (mass, stiffness, 

damping) to match results [11].  

 

We may also consider how well the simplified linear 

1D model itself generally captures the system 

behavior, as the parameter identification for the 1D 

quarter car ride model may or may not achieve 

desirable accuracy.  For example, the kinematic 

structure of suspension may have an effect on 

behavior not captured in the quarter-car model [12].    

 

Other options for generating 1D models include using 

MotionSolve to generate reduced-order models by 

linearizing the model at an operating point [12], or 

non-linear models considered as in [13].    A design 

study tool like HyperStudy may also be used to build 

surrogate models from MotionSolve results based on 

curve fitting to derive equations for inclusion in 

Activate. 
 

 

X. CONCLUSION 

The Model-Based Development process can improve 
the design, delivery and support complex products 
like mechatronics systems.  This paper has 
highlighted 1D and 3D system modeling tools from 
Altair that allow different levels of modeling fidelity 
to be employed, including some examples of active 
suspension based on LQR controller with an 
observer.  Early in the design stage, simpler 
functional models are used where little detail is 
known to investigate design requirements and 
discover key design parameters that affect them.   

As the design matures from these 1D models, 3D 
models can be built to realize the design and create 



 

 

more accurate plant models for controller design and 
tuning. Control systems may be modeled more 
naturally in a signal-based simulation tools, and 
Modelica and Functional-Mock-up Interface help to 
build and share multi-domain plant and actuator 
models for full system integration.  MotionSolve 

multibody 3D models can be employed to validate 
and build 1D models.    Integration of these tools and 
others enables the Model-Based Design process to 
bring together the multi-domain teams needed to 
build the next mechatronics (cyber-physical) 
systems.
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