

Using 1D & 3D Simulation for Mechatronic System Design

Andrew Dyer

Altair Engineering, Inc.

Troy, USA

adyer@altair.com

Abstract— Products and processes have become

increasingly complex to meet demands on performance,

reliability, and cost. As a result, simulation has become a

key component to successfully designing and delivering

these products to market. Mechatronics--also known as

smart or cyber-physical systems—is a marriage of machine

to sensors, actuators, and computing power to achieve the

system goals which cannot be achieved by a purely

mechanical system alone. The Model-Based Development

(MBD) process leverages simulation models and can

improve the design and delivery while supporting complex

products like mechatronics systems.

Using Altair's suite of tools and partner products, the

simulation process from requirements management to

functional system analysis, cascading down to component

design can be achieved for a Model-Based Development

approach. This paper will highlight two of these tools as a

part of MBD during the design phase for plant modeling

and controls synthesis: solidThinking Activate for 1D

system simulation, and MotionSolve for 3D multibody

system simulation. As a case study, a 1D simulation model

of an active suspension system is explored at different stages

of vehicle development including integration with 3D

models via co-simulation.

Keywords—1D, 3D, solidThinking Activate,

HyperWorks MotionSolve, system simulation, Model-

Based Development, Modelica, linear quadratic regulator,

LQR, co-simulation, Altair Partner Alliance, Functional

Mock-up Interface, CarSim, XLDyn, requirements

management, active suspension, mechatronics, cyber-

physical systems

I. OUTLINE

This paper is organized as follows:

Section II introduces the Model-Based
Development (MBD) process and its benefits for
creating and supporting complex mechatronic
systems. 1D and 3D system-level modeling tools
from Altair that support MBD for mechatronic
systems are also summarized.

Section III provides some background on active
suspension systems that will be used in several
examples to illustrate the use of 1D and 3D
simulation tools within MBD.

Section IV develops the functional simulation
model of the active suspension within a 1D
simulation tool, both the mechanism (plant) as well
as the controller model used to explore the design.

Section V reviews usage of a 1D simulation tool
within a systems engineering requirements
management tool to perform early design studies for
products that are composed of many subsystems that
interact and may have competing design parameters.

Section VI considers an alternative modeling
method using Modelica components, which allows
1D model to be created and shared more easily as well
as extend the fidelity by adding more details for the
components of the mechatronics system.

Section VII imports the need to couple different
simulation tools for full system modeling which may
be achieved with a standardized interface called the
Functional Mock-up Interface, as well as other
features of 1D and 3D tools.

Section VIII describes options for increasing the
fidelity of the mechanism (plant) model by coupling
1D with tools like CarSim for vehicle-specific
modeling and MotionSolve for more detailed vehicle
and general mechanism. An example of MotionSolve
+ Activate co-simulation is developed to test the
active suspension with a high-fidelity 3D model.

Section IX highlights options for creating and
validating 1D models based on more detailed 3D
models.

mailto:adyer@altair.com

II. INTRODUCTION – MODEL-BASED

DEVELOPMENT

Over the last several decades, mechatronic
systems have become increasingly prevalent and
important to our lives. A key driver of this has been
the improvement of the power and cost of embedded
controllers and peripherals, which find their way into
new products. Mechatronic systems take many
forms: they improve safety in vehicles with systems
like anti-lock braking and stability control and may
be found underfoot in your house in the form of
autonomous vacuums. Surgeons use robotics to
stabilize their view of the heart for open-heart
surgery, and exoskeletons assist people to help with
repeated heavy lifting. Drones are now delivering
packages.

Vehicles in general are heavily dependent on
mechatronics systems to achieve the levels of
performance and safety required. E-steering, E-
throttle and now E-braking are found in production
vehicles. And, these systems are communicating
with each to each other for new gains in performance;
for example, Mazda’s G-Vectoring Control system
integrates control of engine, transmission, chassis and
body, where sensors monitor steering and throttle
position to help the driver more safely and
comfortably control the steering behavior while
powering through a turn [1].

How can these increasingly complex systems be built
within time and budget constraints, while meeting
customer requirements for performance, reliability,
and quality?

Concurrent design of mechatronics systems –
considering all systems – is not yet mainstream.
Historically, the software for embedded control
systems is developed after the design phase which
includes the mechanism and selection of actuators
and electronics. This approach may prove costly if the
design requirements are not achievable when the
completed system is finally tested.

Model-Based Development (MBD) is a process that
helps to manage and reduce the risk of creating
complex systems. This process relies on simulation
models and flows from abstract to the specific, which
means that design starts with system-level
requirements, and flows from functional system
models to detailed system models to component

models, and back up to implementation through
testing, as shown in the V-diagram in Figure 1.

Figure 1: Extended V-model according to Eigner et al.[14]

Throughout this process, simulation assists in driving
from the high-level requirements down to component
level design. System-level simulation tools help
engineers and designers to analyze designs based on
different levels of fidelity throughout the process,
which is based on the needs of the simulation and the
data available at the time.

For example, early in the design process, no
component geometry may be available, so functional
behavior is captured at this point. Later, as this
functional behavior is better defined and more data
(e.g., geometry, etc.) is available, detailed models
capture the system behavior more accurately as the
design comes to form.

While building these models requires investment, this
approach pays dividends by providing many benefits
critical in meeting design requirements and
mitigating problems that are expensive to fix late in
the design process:

 Test designs earlier in design process when
changes are less expensive

 Perform design studies and optimization
with parametric models to best meet
requirements and determine the most
influential design parameters

 Integrate multi-domain, multi-department
systems in an open environment

 Leverage the knowledge of different
systems into one model, containing both
1D and 3D models

System-level simulation models can be performed by
different tools depending on the preferences of the
designers/analysts. Altair offers several tools in the
Math and Systems categories to help with Model-
Based Development, as modeling approaches and
methods vary at different phases of design:

 solidThinking Compose – Math engine,
Integrated Development Environment
scripting for programmatic models, including
OML (an Octave-like language), TCL, and
Python

 solidThinking Activate – Block-diagram (1D)
multi-domain system level modeling and
optimization with system integration via
Functional Mock-up Interface

 solidThinking Embed – Block-diagram and
state chart (1D) modeling tool with highly
efficient code generation for embedded
controller hardware, high speed data interface
for Hardware in the Loop (HIL) testing

 MotionSolve – 3D Multibody system
simulation, with wide array of modeling
entities for linear and non-linear plant
modeling, open architecture, powerful model
creation including CAD import, and co-
simulation capabilities

For example, simulation with solidThinking Activate
allows a user to model various physical dynamic
systems, control systems, actuators and sensors in a
convenient block diagram environment, which can
also be coupled via co-simulation with MotionSolve
for more detailed plant modeling.

Activate is also a platform for multi-domain system
integration via Functional Mock-up Interface and
support for Modelica libraries (described in more
detail later).

Moreover, models in MotionSolve can be linearized
for classical control system design, and its powerful
non-linear capabilities helps model critical effects
ranging from friction, to component flexibility, to
contact between colliding bodies. Additional
capabilities are available for integration with
Fortran/C/Python which may be used to work with
legacy models. Finally, integration with other
HyperWorks tools allows engineers to perform multi-
physics simulation and perform component-level
design optimization.

Figure 2: Altair’s Simulation Support in the V-Model [15]

Through examples of an active suspension system,
this paper will explore how 1D and 3D system models
can be leveraged in the Model-Based Development
process for varying levels of model fidelity. These
examples will range from initial controller design
exploration with a simplified Activate model to
detailed 3D multibody simulation to test the
mechatronics system via Activate + MotionSolve co-
simulation.

III. INTRODUCTION – ACTIVE SUSPENSION

Automotive suspensions provide utility in vehicle
design by increasing comfort of passengers and
controlling the vehicle response to driver inputs and
road disturbances. A more detailed list of design
requirements for these systems usually includes ride
comfort, durability, handling (performance, safety),
and packaging. Optimizing these systems requires
compromise on design factors that compete to
achieve desired performance. Many different
suspension types can be found for passenger vehicles.
The majority of these rely on passive systems with
spring and damping characteristics that are tuned to
meet the objectives of the vehicle. A common design
is to use a coil spring and shock combination between
control arms and/or the vehicle chassis.

Shocks have a big influence on ride comfort and
handling of vehicles as they are a main source of
damping in the suspension. Typically, the shocks are

hydraulic and control the damping characteristic by
forcing the fluid through small holes.

Active or semi-active suspension systems are used to
improve ride and handling behavior compared to a
passive system. Semi-active suspensions control the
damping behavior, while (fully) active versions
provide direct actuation on the suspension. This is
usually added in parallel with a passive system so that
if the active system fails, the passive spring/shock
will still support the vehicle. Some modern active
suspensions have tunable settings that allow the
driver to change the behavior of the suspension [2].

While active suspensions have been around for many
years, the technology that helps build these systems
has improved to make them perform better and at less
cost, and thus are more broadly feasible.

If we consider the high-level topology of a fully-
active suspension, a controller is used to compute the
actuation force to improve on the passive system
performance. Typically, the motion of the wheel is
measured via sensors and used by the controller to
provide the strategy for input to the actuator.
Different strategies have been studied for control,
from PID to fuzzy logic, optimal and sliding mode
control [3].

The next section describes the details of how this
system is modeled and how the controller strategy is
developed.

IV. FUNCTIONAL PLANT AND CONTROLLER

DESIGN

Early in the design process and before the detailed

design is available, simple 1D models can be used to

help explore designs. In this section a model in

solidThinking Activate illustrates this approach.

The mechatronics system is divided into four main

categories:

1. Plant (mechanism or process to be

controlled)

2. Controller

3. Sensors

4. Actuators

Initially, to analyze a control strategy in this section,

only the first two categories will be considered.

A 1D plant model is often a relatively simple model

with limited fidelity, which captures the functional

behavior to design control systems. This simple

model also has the advantage of being fast, which can

provide real-time performance needed for hardware-

in-the-loop simulation.

Often these models (typically non-linear in response)

are approximated as a linear system – these are

simpler models and helps provide insight to the

behavior of the system. They also allow the use of

linear controls analysis tools to help analyze and

design the controller.

Plant Modeling

The plant model in this case is a quarter car ride

model of the vehicle including a simplified

suspension. This quarter model is a reasonable

representation for independent suspension systems

with the assumption that the parameters of the system

accurately reflect the behavior of the real physical

vehicle. It consists of a two-mass spring damper

system:

 Sprung Mass – representing the vehicle

chassis and a portion of the suspension and

driveline components that are supported by

the springs

 Unsprung Mass – the wheel/tire and

remaining portion of the suspension and

driveline components that are not supported

by the springs

One spring and damper set is connected in parallel

between the sprung and unsprung masses to

represent the suspension vertical compliance, and

another is between the unsprung mass and ground to

represent the tire vertical compliance.

Figure 3: Quarter-car ride model diagram

The equations of motion for the quarter-car ride

model are as follows [4]:

𝑀𝑠𝑍𝑠̈ + 𝐾𝑠(𝑍𝑠 – 𝑍𝑢𝑠) + 𝐶𝑠(𝑍𝑠̇ – 𝑍𝑢𝑠
̇) + 𝑈𝑎 = 0

𝑀𝑢𝑠𝑍𝑢𝑠
̈ + 𝐾𝑠(𝑍𝑢𝑠 – 𝑍𝑠)

+ 𝐶𝑠(𝑍𝑢𝑠
̇ – 𝑍𝑠̇) + 𝐶𝑢𝑠(𝑍𝑢𝑠

̇ – 𝑍𝑟𝑜𝑎𝑑
̇)

+ 𝐾𝑢𝑠(𝑍𝑢𝑠 – 𝑍𝑟𝑜𝑎𝑑) − 𝑈𝑎 = 0

States:

Tire displacement (𝑍𝑢𝑠 – 𝑍𝑟𝑜𝑎𝑑)

Unsprung mass velocity (𝑍𝑢𝑠
̇)

Suspension stroke (𝑍𝑠 – 𝑍𝑢𝑠)

Sprung mass velocity (𝑍𝑠̇)

Dynamic equations such as these can be implemented

in different ways within solidThinking Activate,

depending on what is needed. For example, because

these equations are in linear form, a state-space block

may be used to represent the equations of motion for

the ride model. In this case, a more general form of

equations is used with a Matrix Expression block,

which allows any general form of matrix equations to

be represented and allows for additional terms to be

added later, as needed.

Figure 4: Matrix Expression Block

Inputs to the block shown above are:

1. Road disturbance velocity

2. Actuator force

3. Vehicle states (vector)

Outputs of this block (green, below) are derivative of

the vehicle states, which are integrated by the Integral

block to get the vehicle states, shown below in Figure

5.

Figure 5: Quarter-car ride model inputs

Controller Modeling

The suspension performance can be evaluated by

measuring these outputs in the simulation model:

 Ride: Acceleration of the sprung mass

 Handling: Displacement of the tire

 Packaging: Relative displacement between

sprung/unsprung masses

For this model, a Linear Quadratic Regulator (LQR)

will be used for control, which is a form of optimal

control for state feedback that we can use to balance

the requirements for ride, handling, and packaging.

Activate supports a controls toolbox – a library of

functions that help to build control systems within

command line or scripts within Activate. Using the

scripting support, the Controllability condition of the

system can be computed to make sure that full-state

feedback can be used to implement the LQR control.

Mus,

unsprung

mass

Ms,

sprung

mass

Zs

Ks, Cs

Kus, Cus

Zus

Z
road

Uactuator

Using the function ctrb(), we can confirm that the

quarter car model is indeed controllable based on the

A and B state-space matrices which define the linear

system equations.

The goal of the LQR is to compute the state-feedback

gain matrix that minimizes the cost function, which is

a function of weighted states of the system and the

input actuation force. The states and input signals are

squared to remove sign dependencies giving the cost

function a quadratic shape.

Activate supports an LQR function which takes as

arguments the matrices for the linear state equations

of our quarter car model (A, B) as well as the weights

for the states (Q) and actuator force (R). By selecting

different values for the weights in Q and R, we can

affect the behavior of the system.

The Activate model is parametric, so we can change

the design by varying parameters. We can set a string

to choose different weights for the LQR function and

simulate the different behavior over the different road

surfaces.

Additionally, we can explore adding an observer to

the system to eliminate the need to measure all of the

states of the system to provide state-feedback control.

The Observability of the system can be ascertained

with the Controls Toolbox in Activate using the

obsv() function, and indeed the system is observable

based on the A and C state-space matrices.

An observer makes use of the equation for the plant

model to estimate unmeasured states from those

states that are measured. As a parallel to the gain for

feedback control (K), we want to design a feedback

gain for the observer (L) to minimize the error in the

estimate for the states that are estimated by the

observer. We can use the place() function to place

the observer poles to be faster than the controller

poles to get good performance.

The Activate model with full-state feedback is shown

in Figure 6 below, with and without an observer to

test performance of the observer. Additionally, a

Switch block is used to quickly toggle topology to test

different configurations (with and without active

suspension actuator, with or without observer).

Figure 6: Feedback Controller Added, with Switch blocks to

control model topology

In Figure 7, you can see that the model has options

for different roads, provided as a velocity disturbance

to the quarter car model – two types of single bumps

and a rough road, and again a switch block is used to

choose which road input is active.

Figure 7: Top-level of model with road inputs

Single Bump

The road model first explored is a single bump, with

displacement computed as follows [5]:

𝑍𝑟𝑜𝑎𝑑

= 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
(1 − cos(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝜋 ∗ 𝑡𝑖𝑚𝑒))

2

Where:

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑢𝑚𝑝

The passive system will be compared to three designs

for the controller – “soft”, “moderate”, and “firm”,

which have different weighting on the states for the

LQR controller.

Looking at the suspension stroke (packaging) vs.

sprung mass acceleration (ride), for this particular

design that the “soft” suspension tuning has the

largest peak suspension stroke with the smallest peak

acceleration (Figures 8, 9):

Figure 8: Single Bump Comparison – Suspension Stroke

Figure 9: Single Bump Comparison – Sprung Mass

Acceleration

The observer may also be evaluated and compared for

the single bump test (Figure 10).

Figure 10: Suspension Stroke with/without observer

Rough Road

Evaluating the vehicle response to rough road inputs

is another important consideration for design. The

rough road input is modeled with the following

equation [6]:

𝑅𝑜𝑎𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐼𝑛𝑝𝑢𝑡 = √
𝜎2𝛼𝑉

𝜋
𝑟𝑎𝑛𝑑𝑜𝑚(𝑁)

…where symbols sigma and alpha are parameters that

depend on the road surface, V = vehicle velocity, and

the function random(N) provides N pseudo-random

numbers. This is implemented in the Activate model

as a superblock and is modeled similarly as follows:

Figure 11: Rough road model

In this model values for sigma and alpha are chosen

to represent a “dirt road”.

Root Mean Square (RMS) and Absorbed Power

computations are used in the model to quantify

response to the rough road input. Shown below in

Figure 12 is a comparison of a passive suspension to

the different settings for the active suspension, and

you can see that the active suspension can

significantly reduce the overall RMS acceleration and

thus improve ride comfort. You can also see that the

“Firm” setting increases the RMS acceleration as it

weights other requirements more like reducing

suspension stroke.

Figure 12: Root Mean Square Sprung Mass Acceleration

This simple model enables different control strategies

to be evaluated, e.g., active vs. semi-active vs. passive

in order to understand bounds on performance. Other

aspects of design that can be explored include

discovering design sensitivities, both mechanical and

logical, and effects of delays to the control system.

As more data is available and the design progresses,

the evaluation of sensors and actuators can be added,

including effects of noise, sensitivity, accuracy,

performance, etc.

V. SYSTEM REQUIREMENTS MANAGEMENT

Functional system models are used early in the design

process to explore the feasibility of different control

systems and the effects of changes to the plant model,

like this active suspension example. However, the

active suspension is only one of many systems on a

vehicle that need to be designed and the vehicle as a

whole will have many competing or coupled design

parameters. In order to design the complete vehicle

system, the other requirements should be consider

and linked to either simulation, test or some other

form of evaluation data that can be used to consider

design alternatives.

The Altair Partner Product XLDyn [15] is a systems

engineering tool to balance system level

requirements, helping answer questions early in

development through an add-in tool for Microsoft

Excel® ™ .

Figure 13: XLDyn creates SysML models from requirements

documents for dynamic verification and tracking

XLDyn has both a requirements management feature

set built into XLSE, as well as a simplified system

modeling tool called XL1D. XLSE can create

SysML-based system models of requirements,

populated by data in formatted documents, which

may be derived from an enterprise data system

(Figure 13 above).

XLDyn is also dynamically linked to Activate

models, which may be run directly from an XLDyn

spreadsheet. For example, an anti-lock braking

system (ABS) shown below is modeled in Activate

and linked to XLDyn, where any of the design

parameters in the Activate model can be changed and

resulting design evaluated by XLDyn directly.

(Figures 14, 15 below):

Figure 14: XLDyn integration with Activate

Figure 15: Anti-lock Brake System (ABS) used for systems

design in XLDyn

Common design parameters can be varied to see the

impact on the entire system, including built-in Monte

Carlo analysis. Requirements are verified with

Measure of Effectiveness (MoE's) via all available

results -- simulation, observation, test, etc. With

complete system models and coupled parameters, you

can verify design requirements and provide project

status to management.

VI. MODELICA-BASED MODELING

As the design process evolves and functional design

is established (e.g., via systems design iteration with

XLDyn described previously), more detailed models

emerge to help realize the design.

An active suspension often implements actuation via

hydraulics, and this behavior should be modeled as it

typically is non-linear (e.g., Donahue) [7].

While non-linear equations for hydraulics and other

effects may be modeled via blocks like the Matrix

Expression and others, as we used earlier for the

suspension ride model, alternatively, the system can

represented by dedicated physical components,

which represent portions of the real system, like

valves, pipe, pressure source, etc. These are

implemented via Modelica which has a number of

important benefits, described next.

Modelica Modeling

Up to this point, we have modeled the system based

on traditional signal-based blocks which are causal –

meaning they have a predefined input and output, as

in a gain block:

Figure 16: Signal based blocks

This is a very effect method of modeling for control

systems where the control algorithms often fit

naturally within this scheme.

Another method of modeling is based on the

Modelica language (www.modelica.org), which is an

object-oriented method design to build component

that represent physical entities (e.g., springs,

resistors, pipes, etc.) that comprise models. These

components are equation-based and can be built into

libraries that support different domains. These

physical blocks are acausal – they don’t have

predefined inputs and outputs generally – and a

compiler symbolically sorts the assembled system

equations and determine the causality as part of the

solution process. This makes building models and

changing them much easier, as an engineer does not

need to reformulate the equations for a signal-based

http://www.modelica.org/

block approach when adding fidelity to models as the

design process evolves.

In this regard, the quarter car ride model can be

alternatively represented by these Modelica-based

(physical) components for a mechanical system in

Activate, as shown below:

Figure 17: Modelica implementation of ride model

One benefit to this method in that this assembled

model more closely represents the topology of the

real system, as in Figure 17 from top to bottom, you

can see a component for sprung mass, spring/damper

for the passive suspension, actuator force, unsprung

mass, and the a second spring/damper to represent the

tire. Models are more easily built, modified and

shared. Other components shown in the model in

Figure 17 are added to measure desired outputs –

displacements, velocities, accelerations, etc.

This physical model can be used to replace the

portion of the model we had used to derive the

equations for the Suspension Ride Model via the

Matrix Expression block, and you can see it replaced

via a green superblock (a hierarchical composite

block) shown in the next figure.

Figure 18: Superblock with Modelica components replaces

traditional signal based block

This model can also be copied quickly and compared

to the original model for verification, as both signal-

based and Modelica (physical) blocks can be mixed

in Activate.

Figure 19: Signal-based and Physical-based modeling

Various domains are supported in Modelica-based

libraries, including mechanical, electrical/electronic,

hydraulics, thermal, and many others, both open-

source and commercial.

This has advantages of creating and sharing models;

as an open-source language, you can create and share

your own libraries. Many libraries from various

domains are available, and you can modify open

source libraries to fit your needs.

VII. MULTI-DOMAIN SYSTEM INTEGRATION

One important aspect of Model-Based Development

is creating the entire system model, while sharing and

communicating freely with all of the stakeholders that

contribute to this model in the design process. This

includes not only the early modeling for systems

engineering and requirements management (e.g. with

XLDyn), but also to detailed simulation modeling

that may be combined to analyze each part the full

system. Both Activate and MotionSolve support an

open architecture to be able to achieve this.

A key component to enable full-system modeling is

the Functional Mock-up Interface (FMI). FMI

supports simulation coupling with any other tool that

implements this open-source standard, including

solidThinking Activate as well as almost 100 other

tools at the time of this writing. Support for FMI

available to HyperWorks customers through the

Altair Partner Alliance, which includes CarSim,

MapleSim, and DSH+ (www.fmi-standard.org). FMI

enables tools to be shared and can even hide

proprietary data in compiled models.

In addition, both Activate and MotionSolve support

user subroutines. Activate supports code written in

C, its own scripting language (HML/OML), and

Modelica (code written in this standard).

MotionSolve supports FORTRAN, C/C++, and

Python.

Flexibility in providing interfaces with other tools is

important to highlight with MotionSolve. Besides

coupling with Activate, MotionSolve also co-

simulates with AcuSolve for Computational Fluid

Dynamics, with applications including tank sloshing,

wind turbines, and active grill shutters.

MotionSolve includes other native features that

implement control systems both linear and non-

linear, including Laplace Transfer Functions, State-

space equations, general non-linear differential

equations and algebraic equations.

VIII. INCREASED FIDELITY PLANT MODELING

As more information is available to build higher-

fidelity models, multibody system simulation can be

used to improve the accuracy of the simulation.

Detailed 3D multibody models can be used to both

to validate the quarter-car ride model in the 1D

simulation Activate as well as simulate the plant

model directly via co-simulation, where Activate still

models the rest of the mechatronics system for which

is it better suited– sensors, actuators, and controls.

CarSim [16] is one solution for simulating vehicles

for applications like control system analysis with

models in Activate. CarSim is a software tool from

Mechanical Simulation Corporation that helps create

and analyze simplified vehicle models for real-time

handling performance and Advanced Driver

Assistance Systems. Starting with version 2016.1,

Carsim supports the Functional Mock-up Interface

(FMI; www.fmi-standard.org) co-simulation by

including the capability to automatically generate a

Functional Mock-up Unit (FMU) for co-simulation,

which is a representation of the model and its

interface for simulation.

FMI allows vehicle models from CarSim to be co-

simulated with Activate for coupled system analysis.

For example, we can model an anti-lock brake system

or active damper in Activate with a vehicle model in

CarSim. An example of development of an active

suspension with CarSim can be found in [3].

http://www.fmi-standard.org/
http://www.fmi-standard.org/

Figure 20: Functional Mock-up Interface in CarSim

Figure 21: Activate ABS system co-simulation with CarSim

CarSim provides an effective representation of the

vehicle suspension behavior which provides very fast

simulation, but does not model detailed suspension

components themselves, so some design tasks like

extracting the loads on the suspension components,

are not available.

This is where a 3D solution like MotionSolve is very

effective. MotionSolve is Altair’s very powerful,

flexible, and robust multibody dynamics solver.

MotionSolve models are created in various ways --

either from atomic components (e.g., rigid bodies,

graphics, joints, forces, etc.), from importing CAD to

automatically generate mass properties, or via

libraries of mechanical systems, as with the vehicle

library that contains various design templates for

suspensions, vehicles, analyses, and reports.

MotionSolve supports a large range of components to

create varying levels of fidelity in mechanical system

models. This ranges from simple linear and non-

linear spring dampers, to effects like component

flexibility via Component Mode Synthesis for linear

flexible or for non-linear flexibility based on the

Absolute Nodal Coordinate Formulation (ANCF).

Non-linear bushings, including frequency, amplitude

and load-dependency are supported, and LuGre

friction can be easily added to enhance the model

accuracy. Detailed tire and road models to capture

the effects of non-linear tire behavior are also

integrated into MotionSolve.

In this process of using MotionSolve, once the

mechanism is defined (for example, based on the

CAD or FE components to define your parts),

MotionSolve creates the equations of motion for you,

so you have no need to derive these.

Now, Activate and MotionSolve can be co-simulated,

where the vehicle controller can be tuned further,

actuators verified, test repeatedly and safely, and

minimize risk with the real prototype. In addition,

more accurate system loads can be generated by

including the detailed control system with the

mechanism.

With these loads, you can perform durability studies

with FEMFAT and nCode DesignLife in the Altair

Partner Alliance, compute stress, and use loads for

topology optimization in OptiStruct [8].

Packaging, and placement of sensors and the system

vibration are all possible with the 3D multibody

model.

MotionSolve models are parametric for easy design

changes and design study/optimization with

HyperStudy. MotionSolve results can also be used to

generate the data required to populate CarSim

models.

This next example describes the salient modeling for

the co-simulation with MotionSolve and Activate for

the active suspension implemented in a full-vehicle

passenger car in MotionSolve.

Activate-MotionSolve Co-Simulation

The MotionSolve model is a 3D multibody model

built within the pre-processing interface

MotionView. MotionView supports a vehicle library

to help quickly build and analyze half- and full-

vehicle models, with vehicle specific components

including tires, bushings, bump stops, rebound stops,

etc., as well as many standard vehicle analyses and

accompanying reports. The vehicle library is open

source and may be customized.

Baseline Vehicle Description

The vehicle discussed here is a passenger car – a Ford

Taurus based on an open-source model from National

Highway Traffic Safety Administration [9]. The

model is composed of both rigid and flexible bodies

(based on Component Mode Synthesis, CMS), which

contribute a large portion of the number of degrees of

freedom in this model (1201 DOF). FTire

(Cosin)[10] is used for the wheels which captures the

deformation of the tire as it traverses obstacles.

Forces are added to the rear suspension (only)

between the suspension and the body to apply the

active suspension forces.

Figure 22: NHSTA Ford Taurus in MotionView (courtesy

Jiamin Guan, Mike White, Altair)

Flexible Bodies include the vehicle body, front

subframe, steering column, and front lower link of the

rear quadlink suspension.

Figure 23: Front MacPherson (left) and Rear Quadlink

Suspension (right)

Figure 24: Rear Quadlink Suspension– rigid control arm (left

in image) vs. flexible control arm (right)

Simulation Event – Road Bump

For the first event, the vehicle will travel at 20 miles

per hour over a smooth road until it traverses a bump

with both axles.

Figure 25: Highway bump Simulation Event in MotionSolve

Figure 26: Simulation event ,body hidden

Modifications for Co-simulation with Activate and

MotionSolve

In order to enable co-simulation, input and output

runtime variables are created and used in the

MotionSolve model. The interfacing input variables

from Activate to MotionSolve are stored in an array.

The MotionSolve model requires a solver array of

type Plant Input, which has a list of solver (runtime)

variables including:

 Active Suspension Force, left and right

These forces will be computed by the Activate model

and populated during the co-simulation between

Activate and MotionSolve.

Similarly, the MotionSolve model requires a solver

array of type Plant Output to store outputs from

MotionSolve to Activate, which has a list of solver

(runtime) variables including:

 Suspension Stroke, Left and right

 Sprung Mass Velocity and Acceleration

MotionSolve will compute these values during the

course of the co-simulation and send these over to

Activate to compute the active suspension forces.

Figure 27: Interfacing entities – shown in the MotionSolve

model

Finally, in order to use the actuator force

computations from the Activate model, force entities

are added in the MotionSolve model and reference

the Activate suspension force variables shown above

in order to apply them for co-simulation.

Activate Model Changes for Co-Simulation with

MotionSolve

The plant model, previously represented by a Matrix

Expression block or Modelica components, is now

replaced by a MS Signals block which references the

MotionSolve vehicle model for co-simulation. The

inputs and outputs from this block are created

automatically by Activate based on the Plant Input

and Plant Output arrays found in the MotionSolve

model.

Figure 28: Activate active suspension model for co-simulation

with MotionSolve

Figure 29 Dialog in Activate showing inputs/outputs

The active suspension force modeling in Activate

must be rearranged to accommodate the new model

topology, but the Controller with Observer block

(yellow) remains unchanged – this computes the

feedback gains based on the linear quarter-car ride

model and uses an observer to estimate unmeasured

states.

Figure 30: Active Suspension Actuator Force for Co-

Simulation with MotionSolve

Co-Simulation Results

The active suspension at “moderate” setting in the

Activate script reduces vehicle accelerations by

approximately one-third (Figure 31), while it requires

more suspension stroke to achieve this (Figure 32).

Figure 31: Sprung Mass Acceleration – Passive vs. Active

Figure 32: Suspension Stroke – Passive vs. Active

Peak stress in the rear front lower control arm reduces

~8% with the active suspension with minimal change

in stress contours (Figures 33, 34). The flexible

components do not make a significant change in the

results in this test since the deformations are not large,

but may be important for other road inputs that

provide larger forces to the vehicle.

Figure 33: Stress on LCA - Active Left (Max 2.59– Passive

Right Max 2.80)

Figure 34: Stress on LCA – Active, Closer View

The body of this vehicle is also made flexible by CMS

and the deformation contour can be reviewed as part

of the simulation:

Figure 35: Deformation of Vehicle Body - Front

Figure 36: Deformation of Vehicle Body - Rear

Simulation Event - Pothole

For the second event, the vehicle will travel at 20

miles per hour over a smooth road while traversing a

200 mm deep pothole. The rest of the setup of the

simulation is identical as for the prior bump event.

Figure 37: Pothole Event – Body Deformation

Figure 38: Stress in Rear LCA – Pothole Event

In this case, the loads to the vehicle are more

significant and we can see that the flexible bodies

have an effect on the behavior of the sprung mass

acceleration response in Figure 39.

Figure 38: Sprung Mass Acceleration – Pothole Event

IX. USING 3D TO BUILD 1D

Up to this point, we have not discussed the accuracy

of the 1D model used in the early design phase. How

do we know the simplified linear model is accurate

given that suspension models are non-linear?

Validation to reliable test data is required in order to

remove assumptions that the models used are

producing accurate results.

Physical tests have been historically used for

performance validation. However, as more reliance

on simulation is built up, the role shifts to that of final

validation with a series of intermediate tests to build

confidence in simulation [8].

MotionSolve 3D models may be employed to assist

with validation processes. For the 1D active

suspension model, we can consider how the quarter-

car ride model captures the behavior compared to a

full 3D model with detailed components and

connections modeled. With either test data or a

higher fidelity 3D model from MotionSolve, a

parameter identification analysis may be done with a

design study tool like HyperStudy in order to tune the

parameters in the quarter-car model (mass, stiffness,

damping) to match results [11].

We may also consider how well the simplified linear

1D model itself generally captures the system

behavior, as the parameter identification for the 1D

quarter car ride model may or may not achieve

desirable accuracy. For example, the kinematic

structure of suspension may have an effect on

behavior not captured in the quarter-car model [12].

Other options for generating 1D models include using

MotionSolve to generate reduced-order models by

linearizing the model at an operating point [12], or

non-linear models considered as in [13]. A design

study tool like HyperStudy may also be used to build

surrogate models from MotionSolve results based on

curve fitting to derive equations for inclusion in

Activate.

X. CONCLUSION

The Model-Based Development process can improve
the design, delivery and support complex products
like mechatronics systems. This paper has
highlighted 1D and 3D system modeling tools from
Altair that allow different levels of modeling fidelity
to be employed, including some examples of active
suspension based on LQR controller with an
observer. Early in the design stage, simpler
functional models are used where little detail is
known to investigate design requirements and
discover key design parameters that affect them.

As the design matures from these 1D models, 3D
models can be built to realize the design and create

more accurate plant models for controller design and
tuning. Control systems may be modeled more
naturally in a signal-based simulation tools, and
Modelica and Functional-Mock-up Interface help to
build and share multi-domain plant and actuator
models for full system integration. MotionSolve

multibody 3D models can be employed to validate
and build 1D models. Integration of these tools and
others enables the Model-Based Design process to
bring together the multi-domain teams needed to
build the next mechatronics (cyber-physical)
systems.

References

1- http://www.nydailynews.com/autos/street-smarts/mazda-g-vectoring-control-article-1.2844144

2- http://www.tenneco.com/overview/rc_advanced_suspension/

3- “Modeling and Control of a Nonlinear Active Suspension Using Multi-Body Dynamics System Software”
M. Fahezal Ismaila*, Y. M. Samb, S. Sudinb, K. Pengc, M. Khairi Aripind

4- “Design and Development of PID Controller-Based Active Suspension System for Automobiles, PID Controller
Design Approaches - Theory, Tuning and Application to Frontier Areas”, Senthilkumar Mouleeswaran (2012).
Dr. Marialena Vagia (Ed.), ISBN: 978-953-51-0405-6, InTech, Available from:
http://www.intechopen.com/books/pid-controller-design-approaches-theory-tuning-and-application-to-
frontierareas/
design-and-development-of-active-suspension-system-using-pid-controller

5- PI/PISMC Control of Hydraulically Actuated Active Suspension System”, Yahaya Md. Sam* and Khisbullah

Hudha

6- "Entropy Based Classification of Road Profiles", Baslamisli, Onel

7- “Implementation of an Active Suspension and Preview Controller for Improved Ride Comfort.”, Donahue, M.
D. (2001) University of California at Berkeley: MSc. Theses.

8- http://insider.altairhyperworks.com/assess-component-strength-durability/

http://insider.altairhyperworks.com/analyzing-durability/

9- https://www.nhtsa.gov/crash-simulation-vehicle-models

10- https://www.cosin.eu/

11- “Sprung Mass Identification of Suspension in a Simplified Model”
December 2016 · SAE Technical Papers, Gang TangJinning LiChao DingYunqing Zhang

12- “Reduced-order modelling and parameter estimation for a quarter-car suspension system”, Proceedings of
the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 214(8):851-
864 · September 2000

13- “Nonlinear Two-Dimensional Modeling of a McPherson Suspension for Kinematics and Dynamics Simulation”,
Mar 2012 · International Journal of Vehicle Design

http://insider.altairhyperworks.com/assess-component-strength-durability/
http://insider.altairhyperworks.com/analyzing-durability/
https://www.nhtsa.gov/crash-simulation-vehicle-models
https://www.cosin.eu/
https://www.researchgate.net/publication/289095442_Sprung_Mass_Identification_of_Suspension_in_a_Simplified_Model
https://www.researchgate.net/journal/0954-4070_Proceedings_of_the_Institution_of_Mechanical_Engineers_Part_D_Journal_of_Automobile_Engineering
https://www.researchgate.net/journal/0954-4070_Proceedings_of_the_Institution_of_Mechanical_Engineers_Part_D_Journal_of_Automobile_Engineering
https://www.researchgate.net/publication/232702127_Nonlinear_Two-Dimensional_Modeling_of_a_McPherson_Suspension_for_Kinematics_and_Dynamics_Simulation

14- “System lifecycle management: Initial approach for a sustainable product development process
based on methods of model based systems engineering. In: Product Lifecycle Management for a
Global Market.” Springer, pp. 287–300, Eigner,M., Dickopf,T., Apostolov,H., Schaefer,P., Faißt,K.-G.,
Keßler,A.,2014.

15- http://www.altairhyperworks.com/partner/xldyn

16- https://www.carsim.com/

http://www.altairhyperworks.com/partner/xldyn
https://www.carsim.com/

