SimLab is a process-oriented multidisciplinary simulation environment to accurately analyze the performance of complex assemblies. Multiple physics including structural, thermal, and fluid dynamics can be easily setup using highly automated workflows, helping to drastically reduce the time spent creating finite element models and interpreting results.
Learn More About SimLabSimLab helps bring Altair’s simulation-driven design philosophy to the electronics industry, inspiring innovation while ensuring timing, performance, reliability, and compliance targets are met. A direct interface to common ECAD formats allows EDA users to confidently identify and correct potential design issues earlier in development. Thermal analyses can be easily performed without requiring advanced CFD knowledge. Automate structural stress, vibration, and drop test performance assessments with robust and repeatable workflows for fast, accurate, and consistent analysis, even for occasional users. SimLab even models fiber orientation during the injection molding process of plastic enclosures and manages structural solver coupling.
Altair's ESD solution represents a shift in the design and optimization of integrated circuits (ICs) and heterogeneous packages, employing a singular, integrated process centered around a 3D digital twin that expands collaboration and accelerates design. This approach is pivotal in solving complex systems' interrelated power and thermal challenges. What-if floor planning studies for various chiplet configurations in SimLab empower multidisciplinary teams to better understand power profiles and cooling efficiency and identify potential thermal hotspots and weak points early in the design phase.
Additionally, SimLab improves the reliability of 3D IC designs and packages by ensuring resilience against warpage under compressive stresses, a common issue that can create significant reliability concerns in densely packed chiplet configurations. With SimLab’s proven, integrated approach, chip manufacturers can navigate the complexities of 3D IC design with greater confidence and precision – ultimately leading to more reliable and cost-effective electronic systems.
Reduce the complexity of transient heat transfer, steady state and transient flow, plus injection molding simulations with SimLab. Quickly understand the performance of a heat sink, convection heating system, or the cooling of an axle housing with fast meshing, material property assignment, and defined boundary conditions. Move from CAD to the simulation of turbulent flow problem with surface mesh, volume mesh, and boundary automated layer generation. The injection molding application simplifies the pre- and post-processing of advanced manufacturing simulations.
While SimLab accelerates the simulation of structural, thermal flow, and electromagnetic physics, its workflows also enable the fast analysis of thermal and mechanical physics using a single model including a one-step transient thermal stress analysis. These advanced simulations allow engineers to understand how parts behave under real world conditions in environments requiring linear or nonlinear steady-state, linear transient analysis, or contact-based thermal analysis.
With application specific workflows for drop test, fatigue, and structural optimization, SimLab simplifies complex analysis problems. Import an existing CAD geometry, retain parametrization, and automatically mesh to quickly experiment with design variants for an increased understanding of linear static, non-linear static, normal modes, modal frequency response, or small displacement performance. Alternatively, be guided through the definition of a design space, responses, constraints, and an optimization objective to use Altair® OptiStruct®to generate a lightweight and structurally efficient design proposal.
Speaker design and analysis, especially for a more complex product, system, or component, often requires building multiple simulation models. The loudspeaker development process involves multi-physics and multiple sources in parallel, to multiple simulation runs for prototyping, testing, and validation. This results in separate models for nonlinear analysis of strength, thermal analysis and stiffness, noise, vibration, and acoustics. Even though each model isn’t always built from scratch, typically the use of different solvers for each attribute will require that models need to be converted from one solver format to another. This practice is not only time consuming but frequently error prone resulting in an inefficient use of engineering time.
The rapidly growing electric vehicle (EV) market is at the forefront of transportation innovation, driven by the need for cleaner, more sustainable mobility solutions. At the heart of every EV lies a remarkable technological innovation – the battery module. These compact, powerful energy storage units are revolutionizing the automotive industry and have become the backbone of sustainable transportation. Central to the development of high-performance EVs is the design and engineering of the battery module. Finite element analysis (FEA) plays a pivotal role in optimizing battery module performance, safety, and reliability. This whitepaper explores the effect of cylindrical cells versus prismatic cells on the structural integrity of a battery module through a design study, made easy and efficient using Altair’s revolutionary Altair SimSolid technology.
Designing consumer electronics for mass production requires a team of experts focusing on various aspects of design and manufacturing process. With a fragmented engineering process, exchange of models and information can cost valuable time in a competitive landscape. This webinar presents Altair’s unique Simulation Driven Design platform will shorten your design cycle, time which is pivotal to a company’s success.
In this presentation, Bharad Gundepudi, Senior Application Engineer for SimLab at Altair, will explore the challenges that designers of electronics systems face in identifying various points of failure and addressing these issues using different approaches. Designers need to consider multiple types of physics, including structural, thermal, fatigue, and more, which can be a daunting task.
Gundepudi will showcase how Altair SimLab, a single environment for setting up multi-physics analyses, can help designers to overcome some of these challenges. Attendees can expect to learn how to utilize SimLab to streamline the analysis process, reduce errors, and increase efficiency, resulting in better design optimization and improved product reliability.
Presented as part of Altair's 2023 Future.Industry conference.